CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK PG & RESEARCH DEPARTMENT OF PHYSICS

M.Sc Physics: Those who have joined in the Academic year 2023-24 onwards

Part		Course	Cr.	Hrs					
		SEMESTER I							
	CC – 1	Mathematical Physics	232104101	4	6				
	CC - 2	Classical Mechanics and Relativity	232104102	4	6				
	CC – 3	Linear and Digital ICs and Applications	232104103	4	6				
A	CC -3 P	Practical - I	232104104	4	6				
	EC –I (Generic/DS)	Energy Physics	232104105	2	2				
	SEC I	Material Science	232104106	2	2				
В	AECC 1 – Soft Skill	Medical Physics	232104107	2	2				
	Total			22	30				
SEMESTER II									
	CC – 4	Statistical Mechanics	232104201	4	6				
	CC - 5	Quantum Mechanics – I	232104202	4	6				
Α	CC - 6	Practical - II	232104203	4	6				
	EC – II	Nonlinear Dynamics	232104204	3	4				
	EC - III	Characterization of Materials	232104205	3	4				
-	SEC – II	Advanced Optics	232104206	2	2				
В	AECC 2	Thin Films	232104207	2	2				
	*Internship	Internship / Industrial Activity		-	-				
				22	30				
	·	SEMESTER III							
	CC – 7	Quantum Mechanics - II	232104301	4	6				
	CC - 8	Condensed Matter Physics	232104302	4	5				
٨	CC – 9	Electromagnetic Theory	232104303	4	5				
A	Core P	Practical – III Numerical Methods and Computer Programming (EOTR AN/C)	232104304	3	6				
	EC IV	Physics of Nano Science and Technology	23210/305	3	1				
	SEC III	Renewable Energy Sources	232104305	2	+ 2				
D	$\Delta ECC = M$	Arduino Based Instrumentations	232104300	2	2				
D	ALCC – 5	Internshin / Industrial Activity	232104307	2					
	Internship	Internsing / Industrial Activity	232104300	2	30				
		SEMESTER IV		24	50				
	CC – 10	Nuclear and Particle Physics	232104401	4	6				
	CC – 11	Spectroscopy	232104402	4	5				
		Numerical Methods and Computer							
A	CC - 12	Programming	232104403	4	5				
	Core – P	Practical - IV	232104404	3	6				
	CC - 13	Project with Viva voce	232104405	3	4				
D	SEC – IV	Analytical Instrumentations	232104406	2	2				
D	AECC-4	Thin Films	232104407	2	2				
C	EA	Extension Activity	232104408	1	-				
	Total			23	30				

* Internship will be carried out during the summer vacation of the first year and marks will be included in the Third Semester Marks Statement.

Title of the	e Course	MATHEMATICAL PHYSICS								
Part		Α								
Catagony	Coro 1	Year	Ι	Credita	1	C	Course		22210/101	
Category	Cole I	Semester	r I	Creatis	4	Code		252104101		
Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	IA External Tot		Total	
per week		5	1		6	25 75		100		
			Pre-F	Requisites						
Matrice	s, vectors, differ	rentiation,	integration	n, differenti	ial equat	ions				
			Learnin	ng Objectiv	'es					
🗷 To e	quip students v	vith the m	nathematic	al techniqu	les need	ed for	understa	andi	ng theoretical	
treatment in different courses taught in their program										
-										

- \varkappa To extend their manipulative skills to apply mathematical techniques in their fields
- To help students apply Mathematics in solving problems of Physics

UNITS	Course Details
UNIT I: LINEAR VECTOR SPACE	Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure – linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – Direct sum and invariant subspace – orthogonal transformations and rotation
UNIT II: COMPLEX ANALYSIS	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxial cylinders and an annular region (2) Heat problems - Parallel plates and coaxial cylinders
UNIT III: MATRICES	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley–Hamilton theorem – Diagonalization
UNIT IV: FOURIER TRANSFORMS & LAPLACE TRANSFORMS	Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi - infinite string. Laplace transform and its inverse - Transforms of derivatives and integrals – Differentiation and integration of transforms - Dirac delta functions - Application - Laplace equation: Potential problem in a semi - infinite strip
UNIT V: DIFFERENTIAL EQUATIONS	Second order differential equation- Sturm-Liouville's theory - Series solution with simple examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations – Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties - Dirac delta function- One dimensional Green's function and Reciprocity theorem -Sturm-Liouville's type equation in one dimension & their Green's function.

PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
	1. George Arfken and Hans J Weber, 2012, Mathematical Methods for
	Physicists – A Comprehensive Guide (7th edition), Academic press.
	2. P.K. Chattopadhyay, 2013, <i>Mathematical Physics</i> (2 nd edition), New Age,
	New Delhi
	3. A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition
TEXT BOOKS	(Paperback), New Age International Pvt. Ltd., India
	4. B. D. Gupta, 2009, <i>Mathematical Physics</i> (4 th edition),
	Vikas Publishing House, New Delhi.
	5. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh
	Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.
	1. E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern,
	New Delhi,
	2. D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics,
	3rd Ed. Narosa, New Delhi.
REFERENCE	3. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill, New
BOOKS	York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley,
DOOLD	Reading, Massachusetts.
	4. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition,
	Affiliated East West, New Delhi.
	5. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics,
	6 th Edition, International Edition, McGraw-Hill, New York
	1. <u>www.khanacademy.org</u>
	2. <u>https://youtu.be/LZnRIOA1_2I</u>
WEB SOURCES	3. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath</u>
	4. <u>https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTE</u>
	U27vS_SIED56gNjVJGO2qaZ
	5. https://archive.nptel.ac.in/courses/115/106/115106086/

At the end of the course the student will be able to:

CO1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them	K1, K2
CO2	Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.	K2, K3
CO3	Analyze characteristics of matrices and its different types, and the process of diagonalization.	K4
CO4	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology	K4, K5
CO5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems	K2, K5
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

Title of the	e Course	CLASSI	CLASSICAL MECHANICS AND RELATIVITY								
Category	Core 2	Year	I I	Credits	4		Course	2	32104102		
Instruction	nal Hours	Lecture	Tutorial	Lab	Total	CIA	A Extern	nal	Total		
per week		6	_		6	25	75		100		
			Pre-R	equisites			•				
Fundam	Fundamentals of mechanics, Foundation in mathematical methods.										
	1 1 1 0	1 . 1	Learnin	g Objective	es						
ي Tou سر Tou سoti سر Tou	 To understand fundamentals of classical mechanics. To understand Lagrangian formulation of mechanics and apply it to solve equation of motion. To understand Hamiltonian formulation of mechanics and apply it to solve equation of mechanics. 										
mou	on. liscuss the the	orv of small	oscillatio	ns of a syste	em.						
∠ To le	earn the relativ	vistic formu	lation of n	nechanics o	f a syste	m.					
UN	ITS			Cours	se Deta	nils					
		N 1 '	<u> </u>		1		<u> </u>				
UNIT I: PRINCIPLES OF CLASSICAL MECHANICSMechanics of a single particle – mechanics of a system of particl conservation laws for a system of particles – constraints – holonom non-holonomic constraints – generalized coordinates – configura space – transformation equations – principle of virtual work.							particles – olonomic & onfiguration				
UNI LAGRA FORMU	T II: NGIAN LATION	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.									
UNI' HAMIL' FORMU	T III: FONIAN ILATION	Phase space function – H simple pend motion of pa	– cyclic c lamilton's ulum (ii) trticle in a	coordinates canonical one dimens central for	 – conjug equation sional si ce field. 	ate n s of n mple	nomentum motion – a harmonio	n – F appl c oso	Iamiltonian ications: (i) cillator (iii)		
UNI SM OSCILL	T IV: ALL ATIONS	Formulation frequencies	of the p of normal	roblem – tr modes – lir	ransform near triat	ation omic	n to norm c molecule	al c	oordinates –		
UN RELA	IT V: TIVITY	Inertial and length contr – Einstein's position, ve notation and	non-inert action and mass-ener locity, m their tran	ial frames I time dilati rgy relation omentum, sformations	– Loren ion – rel – Minko accelera	tz tra ativis owsk tion	ansformati stic additi i's space - and force	ion o on o – fou e in	equations – of velocities or vectors – for vector		
UN PROFE COMP	IT VI: SSIONAL ONENT S	Expert Leo Interactions/ Communica Patriotism	ctures, (Visits, tion Ski	Online Ser Competitive 11 Enhanc	minars e Exar ement,	- V ninat Soc	Webinars tions, Er eial Acco	on mplo ount	Industrial yable and ability and		
TEXT BOOKS 1. H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson Edu. 2. J. C. Upadhyaya, Classical Mechanics, Himalaya Publishing Co. New Delhi. 3. R. Resnick, 1968, Introduction to Special Theory of Relativity Wiley Eastern, New Delhi. 3. R. G. Takwala and P.S. Puranik, Introduction to Classic Mechanics – Tata – McGraw Hill, New Delhi, 1980. 5. N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGra								n, Pearson Publshing. <i>Relativity</i> , Classical a McGraw			
REFE BO	RENCE OKS	1. K. R 2. S. N Kolk 3. Gup 4. T.W 5. Gree	. Symon, I. Biswas cata. ta and Kun .B. Kibble enwood, <i>C</i>	1971, Mech , 1999, Cla mar, Classia e, Classical Classical Dv	anics, A assical M cal Mech Mechan namics.	ddiso Mech hanic ics, E PHI.	on Wesley anics, Bo s, Kedar M ELBS. New Dell	y, Lo ooks Nath hi.	ndon. & Allied,		

	1.	http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldste
		in Classical Mechanics optimized.pdf
	2.	https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-
WED COUDCES		editionpdf-pdf-free.html
WED SOURCES	3.	https://nptel.ac.in/courses/122/106/122106027/
	4.	https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-
		fall-2014/lecture-notes/
	5.	https://www.britannica.com/science/relativistic-mechanics

At the end of the course the student will be able to:

CO1	Understand the fundamentals of classical mechanics.	K2				
COI						
CO2	Apply the principles of Lagrangian and Hamiltonian					
	mechanics to solve the equations of motion of physical	K3				
	systems.					
CO3	Apply the principles of Lagrangian and Hamiltonian	W2				
	mechanics to solve the equations of motion of physical	КЗ,				
	systems	К5				
004						
CO4	Analyze the small oscillations in systems and determine their	K4,				
	normal modes of oscillations.	K5				
CO5	Understand and apply the principles of relativistic kinematics	K2,				
	to the mechanical systems.					
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	2	2	2	3	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	2

Title of the	Course	LINEAR AND DIGITAL ICs and APPLICATIONS									
Catagony	Coro 3	Year	Ι	Credita	4	Course Code		232104103			
Category	Cole 5	Semester	Ι	Creans	4						
Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	Exte	ernal	Total		
per week	per week		-		6	25	75		100		
	Pre-Requisites										
Knowled	ge of semico	onductor devi	ces, basic	concepts of dig	ital and	analog el	ectron	ics			
			Learn	ning Objective	S						
🗷 To int	roduce the b	asic building	blocks of	linear integrate	d circuit	s.					
💉 To tea	ch the linear	and non-line	ar applica	tions of operati	onal a	amplifiers	5.				
🗷 To int	roduce the th	neory and app	olications of	of PLL.							

- To introduce the concepts of waveform generation and introduce one special function ICs.
 Exposure to digital IC's

UNITS	Course Details
UNIT I: INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER	Introduction, Classification of IC's, basic information of Op-Amp 741 and its features, the ideal Operational amplifier, Op-Amp internal circuit and Op-Amp. Characteristics.
UNIT II: APPLICATIONS OF OP-AMP	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.
UNIT III: ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566), low pass filter, monolithic PLL and applications of PLL
UNIT IV: VOLTAGE REGULATOR & D to A AND A to D CONVERTERS	 VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator. D to A AND A to D CONVERTERS: Introduction, basic DAC techniques -weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters -parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.
UNIT V: CMOS LOGIC, COMBINATIONAL CIRCUITS USING TTL 74XX ICs & SEQUENTIAL CIRCUITS USING TTL 74XX ICs	CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CMOS Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR- AND-INVERT gates, implementation of any function using CMOS logic. COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC 7485), Decoder (IC 74138, IC 74154), BCD to 7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151), Demultiplexer (IC 74154). SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474, IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit asynchronous binary counter (IC 7493).
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age International Pvt. Ltd., New Delhi, India Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition, Prentice Hall / Pearson Education, New Delhi. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S. Chand & Co.

	4. 5.	V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co, 12th Edition.V. Vijayendran, 2008, Introduction to Integrated electronics (Digital & Analog), S. Viswanathan Printers & Publishers Private Ltd, Reprint. V.
REFERENCE BOOKS	 1. 2. 3. 4. 5. 	 Sergio Franco (1997), Design with operational amplifiers and analog integrated circuits, McGraw Hill, New Delhi. Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International, New Delhi. Malvino and Leach (2005), Digital Principles and Applications 5th Edition, Tata McGraw Hill, New Delhi Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education, New Delhi. Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th Reprint (2000)
WEB SOURCES	1. 2. 3. 4. 5.	https://nptel.ac.in/course.html/digital circuits/ https://nptel.ac.in/course.html/electronics/operational amplifier/ https://www.allaboutcircuits.com/textbook/semiconductors/chpt-7/field- effect-controlled-thyristors/ https://www.electrical4u.com/applications-of-op-amp/ https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/

At the en	d of the course the student will be able to:	
CO1	Learn about the basic concepts for the circuit configuration for the design of	K1,
	linear integrated circuits and develops skill to solve problems	K5
CO2	Develop skills to design linear and non-linear applications circuits using Op-	V2
	Amp and design the active filters circuits.	КJ
CO3	Gain knowledge about PLL, and develop the skills to design the simple	K1,
	circuits using IC 555 timer and can solve problems related to it.	K3
CO4	Learn about various techniques to develop A/D and D/A converters.	K2
CO5	Acquire the knowledge about the CMOS logic, combinational and sequential	K1,
	circuits	K4
K1 - Re	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

CategoryVearICredits4Course232104104Instructional Hours per weekLetureTuorialLabTotalExternalTotalInstructional Hours per weekLetureTuorialLabExternalTotal662575100Free-RequisitesKnowledge and hands on experience of basic general and electronics experiments of Physics \ll To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. \ll To calculate the thermodynamic quantities and physical properties of materials. \ll To calculate the thermodynamic quantities and physical properties of materials. \ll To calculate the thermodynamic quantities and physical properties of materials. \ll To calculate the thermodynamic quantities and physical properties of materials. \ll To calculate the thermodynamic quantities and physical properties of materials. \ll To calculate the thermodynamic quantities and physical properties of materials. \And To calculate the thermodynamic quantities and physical properties of materials. \And To calculate the thermodynamic quantities and physical properties of materials. \bigstar To calculate the thermodynamic quantities and physical properties of materials. \bigstar Determination of Yoscosiy of the given inquid – Meyer's dise \updownarrow Determination of Thickness of the namel coating on a wire by diffraction ti Determination o	Title of the C	Course	Practical - I						
CategoryCore 3PYear1 SemesterCredits4Course Code232104104Instructional Hours per werkItectureTutorial PrecisionTotalCtAExternalTotal662.57.5100Pre-RequisitesKnowledge and hands on experience of basic general and electronics experiments of PhysicsCondeculate the thermodynamic quantities and physical properties of materials. \ll To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.Course Details(Any Twelve Experiments)(Any Twelve Experiments)1.Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes - Cornu's Method2.Determination of Thickness of the enamel coating on a wire by diffraction3.Determination of Thickness of air film Solar spectrum7.FIelaon8.Determination of Mack Constant - LED Method11.Determination of Mack Constant - LED Method12.Determination of Ange penergy - Thermistor10.Determination of Mack Constant - LED Method11.Determination of Wavelength S, Sparation of wavelengths - Michelson Interferometer14.GAM conduct vity - Four probe method.15.Neasurement of Conductivity - Four probe method.16.Arc spectrum - Iron.7.Measurement of Wavelength of Diode Laser / He - Ne Laser using Diffraction grating.19.Determination of Wavelength of Diode L									
Category 3P Semester 1 Crutini Total Crute Description Instructional Hours Leture Tutorial Total Crute Total Total per week 6 - - 6 25 75 100 Pre-Requisites Knowledge and hands on experience of basic genaral and electronics experiments of Physics To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. -	Catagory	Core –	Year	Ι	Crodite	1	C	ourse	23210/10/
Instructional Hours per veek Lecture 6 Tutorial Practice Procession Ctal Esternal External Total 6 - - 6 25 75 100 Network Knowledge and hands on experience of basic general and electronics experiments of Physics Learning Objectives To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. To analyze the optical and electrical properties of materials. To analyze the optical and electrical properties of materials. Coalculate the thermodynamic quantities and physical properties of materials. Coalculate the thermodynamic quantities and physical properties of materials. Measurement of Coefficient of linear expansion - Air wedge Method Bettermination of Thickness of the enamel coating on a wire by diffraction Determination of Thickness of air film Solar spectrum Prelation Determination of Compressibility of a liquid using Ultrasonics Determination of	Category	3P	Semester	Ι	Creatis	4	C	ode	232104104
per week 6 - - 6 25 75 100 Pre-Requisites Knowledge and hands on experience of basic general and electronices experiments of Physics Learning Objectives ✓ To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electronical behavior of materials. ✓ To analyze the optical and electronical behavior of materials. ✓ To analyze the optical and electronical properties of materials. ✓ To analyze the optical and electronical properties of materials. ✓ To analyze the optical and electronical behavior of materials. ✓ Determination of Yuccosity of the given liquid – Meyer's dise 3. Measurement of Coefficient of linear expansion- Air wedge Method 4. B-11 Loop using Anchec Constant – Hydrogen Spectrum 7. PE Ealon 8. Determination of Thickness of air film Solar spectrum 9. Measurement of Bad gap energy - Thermistor 10. Determination of Specific charge of an elect	Instructional	Hours	Lecture	Tutorial	Lab	Total	CIA	Externa	l Total
Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State Image: Second State	per week		6		Practice	6	25	75	100
IPPERCIPATION IPPERCIPATION INTERCIPATION IN			0	- Dwo D		0	25	15	100
Iterring Objectives ✓ To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. ✓ To calculate the thermodynamic quantities and physical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of static by Hyperbolic fringes - Cornu's Method 0. Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butter fringes. 9. Measurement of Band gap energy- Thermistor 10. Determination of Thack Constant -	77 1 1	11 1		Pre-R				•	
Learning Objectives ≥ To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. ≥ To calculate the thermodynamic quantities and physical properties of materials. ≥ To analyze the optical and electrical properties of materials. ≥ To analyze the optical and electrical properties of materials. ≥ To analyze the optical and electrical properties of materials. ≥ To acculate the thermodynamic quantities of materials. > Determination of Viscosity of the given liquid – Meyer's disc > Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Batler fringes. > Measurement of Constant - LED Method 1: Determination of Specific endrip of an electron – Thomson's method. 1: Determination of Maxelength, Separation of wavelengths - Michelson Interferometer 1: Go contres estate awa ad absorption coefficient. 1: Measurement of Conductivity - Four probe method. 1: Arespectrum 1 fr	Knowledge	e and hands	on experience	of basic ge	eneral and e	electron	cs exp	eriments (of Physics
 Io understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. ✓ To calculate the thermodynamic quantities and physical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To analyze the optical and electron of the given liquid of a state of the given by the probability of a liquid using the properties of the analyse of the properties of the properties of the properties of the state of the properties of the state of the properties of the state of the sta				Learnin	<u>g Objectiv</u>	res	• 1	1 1 1	
 ≥ To calculate the thermodynamic quantities and physical properties of materials. ✓ To calculate the thermodynamic quantities and physical properties of materials. Course Details (Any Twelve Experiments) Determination of Viscosity of the given liquid – Meyer's disc Measurement of Coefficient of linear expansion- Air wedge Method B-H loop using Anchor ring. Determination of Thickness of the enamel coating on a wire by diffraction Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butler fringes. Measurement of Band gap energy- Thermistor Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butler fringes. Measurement of Band gap energy- Thermistor Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butler fringes. Measurement of Band gap energy- Thermistor Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butler fringes. Measurement of Band gap energy- Thermistor Determination of Compressibility of a liquid using Ultrasonics Determination of Compressibility of a liquid using Ultrasonics Determination of Compressibility of a liquid using Ultrasonics Measurement of Conductivity - Four probe method. Are spectrum – Iron. Measurement of Conductivity - Four probe method. Are spectrum – Iron. Measurement of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavicr, Radiaton Patter- Microwave test bench 	Z To und	lerstand the	concept of m	echanical	behavior of	of mater	als an	d calcula	tion of same using
 To carching the definition of particular properties of materials. Course Details (Any Twelve Experiments) Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes - Cornu's Method Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes - Cornu's Method Betasurement of Coefficient of linear expansion- Air wedge Method B+H loop using Anchor ring. Determination of Thickness of the enamel coating on a wire by diffraction Determination of Thickness of air film Solar spectrum - Hartmann's formula. Edser and Butler fringes. Measurement of Band gap energy- Thermistor Determination of Specific charge of an electron - Thomson's method. Determination of Specific charge of an electron - Thomson's method. Determination of Voulent, Separation of wavelengths - Michelson Interferometer GM counter - Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Are spectrum - Iron. Measurement of Wavelength, Separation of wavelengths - Michelson Interferometer GM counter - Characteristics, inverse square law and absorption coefficient. Measurement of Wavelength of Diode Laser / He - Ne Laser using Diffraction grating. Betermination of Diffraction pattern of Hight with circular aperture using Diode/He-Ne laser. Measurements of Standing wave and standing wave coefficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench Uv-Visible spectroscopy - Verification of Beer-Lambert's law and identification of wavelength maxima - Extinction coefficient usi	\propto To colo	mate equation	nis.	montition	nd physics	1 propor	tion of	motoriala	
Course Details Course Details (Any Twelve Experiments) Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes - Cornu's Method Determination of Viscosity of the given liquid – Meyer's disc Measurement of Coefficient of linear expansion- Air wedge Method B-H loop using Anchor ring. Determination of Thickness of the enamel coating on a wire by diffraction Determination of Thickness of the enamel coating on a wire by diffraction Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Buller fringes. Measurement of Band gap energy- Thermistor Determination of Planck Constant LED Method Determination of Compressibility of a liquid using Ultrasonics Determination of Diractcristics, inverse square law and absorption coefficient. Sectrum Iron. Measurement of Conductivity - Four probe method. Arc spectrum Iron. Molecular spectra – AlO band. Measurement of Standing wave and standing wave coefficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Patter – Microwave test bench Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Study the bage triescocy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Sourdy of important electrical characteristics of UC-4. Study of attenuation characteristics of Wien's bridge network and design of Micr's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Micr's bridge oscillator using Op-Amp. Construction of square wave Triangular wave generator using IC 741 Construction of square wave Triangular wave generator using IC 741 Construction of square wave Triangu	\ll To anal	vze the onti	cal and electric	ral propert	ties of mate	rials		materials	
 (Any Twelve Experiments) Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes - Cornu's Method Determination of Viscosity of the given liquid – Meyer's disc Measurement of Coefficient of linear expansion-Air wedge Method B-H loop using Anchor ring. Determination of Rydberg's Constant - Hydrogen Spectrum FF Etalon Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butler fringes. Measurement of Band gap energy-Thermistor Determination of Planck Constant - LED Method Determination of Planck Constant - LED Method Determination of Specific charge of an electron – Thomson's method. Determination of Vavelength. Separation of wavelengths - Michelson Interferometer GM counter - Characteristics, inverse square law and absorption coefficient. Measurement for douctivity - Four probe method. Are spectrum - Iron. Molecular spectra - AlO Band. Measurement of Standing wave and standing wave coefficient using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Uv-Visible spectroscopy - Verification of Beer-Lambert's law and identification of wavelength maxima - Extinction coefficient Construction of relaxation oscillator using UIT FC Samplifer: Frequency response, input impedance, output impedance Study of attenuation characteristics of Plase shift network and design of Phase shift oscillator using Op-Amp. Construction of square wave Triangular wave generator using IC 741 Construction of selse generator using IC 741 for a given hysteresis- application as squarer. Construction of Jouse generator us		ijze die opti			D 4 11	11415.			
 (Any Twelve Experiments) Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes - Cornu's Method Determination of Viscosity of the given liquid – Mcycr's dise Measurement of Coefficient of linear expansion- Air wedge Method B-H loop using Anchor ring. Determination of Thickness of the enamel coating on a wire by diffraction Determination of Thickness of air film Solar spectrum FP Etalon Betermination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butter fringes. Measurement of Band gap energy- Thermistor Determination of Specific charge of an electron – Thomson's method. Determination of Compressibility of a liquid using Ultrasonics Determination of Owavelength. Separation of wavelengths - Michelson Interferometer GM counter – Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Are spectrum – Iron. Molecular spectra – AIO band. Measurement of Standing wave and standing wave co-efficient. Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Exticned condition coefficient Construction of relaxation oscillator using UJT FET CS amplifier - Frequency response, input impedance, output impedance Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Construction of Schmidt trigger circuit using IC 741 Construction of Schmidt trigger circuit using IC 741 Construction of Schmidt trigger circuit using IC 741 or a given hysteresis- application as square. Study of attenuation characteristics of Phase shift network and design of Wien's bridge oscillator using Op-Amp. Stu				Cours	se Details	S			
 Determination of Young's modulus and Poisson's ratio by Hyperbolic Iringes - Cond 's Method Determination of Young's modulus and Poisson's ratio by Hyperbolic Iringes - Cond 's Method Beta and the given liquid - Meyer's disc Measurement of Coefficient of linear expansion- Air wedge Method B-H loop using Anchor ring. Determination of Thickness of the enamel coating on a wire by diffraction Determination of Thickness of air film Solar spectrum - Hartmann's formula. Edser and Butler fringes. Measurement of Band gap energy- Thermistor Determination of Planck Constant - LED Method Determination of Compressibility of a liquid using Ultrasonics Determination of Compressibility of a liquid using Ultrasonics Determination of Compressibility of a liquid using Ultrasonics Determination of Conductivity - Four probe method. Are spectrum - Iron. Measurement of Conductivity - Four probe method. Are spectrum - Iron. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench Uv-Visible spectroscopy - Verification of Beer-Lambert's law and identification of wavelength maxima - Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier - Frequency response, input impedance, output impedance Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of Scharacteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Study of Binary to Gray and Gray to Binary code conversion. Study o	1 Deter		· V	(Any Two	elve Exper	iments)		1. 6.	
 Determination of Viscosity of the given hydro – nycyer's disc Measurement of Coefficient of linear expansion- Air wedge Method B-H loop using Anchor ring. Determination of Rydberg's Constant - Hydrogen Spectrum FP Etalon Determination of Band gap energy- Thermistor Determination of Specific charge of an electron – Thomson's method. Determination of Specific charge of an electron – Thomson's method. Determination of Ocopressibility of a liquid using Ultrasonics Determination of Oropressibility of a liquid using Ultrasonics Determination of Oropressibility of a liquid using Ultrasonics Determination of Wavelength, Separation of wavelengths - Michelson Interferometer GM counter – Characteristics, inverse square law and absorption coefficient. Measurement of Wavelength of Diode Laser / He – Ne Laser using Diode/He-Ne laser. Molecular spectra – AlO band. Measurement of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient colours of LED. Study of attenuation characteristics of VETA1. Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of attenuation characteristics of Vien's bridge network and design of Wien's bridge oscillator using Op-Amp. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of pudge generator using IC 741 – application as frequency divider Construction of pudge generator using IC 741 – application as frequency divider Construction o	1. Deter	mination of	Young's mode	lius and Po	oisson's rat	10 by Hy	yperbo.	lic iringes	- Cornu's Method
 Medsurential of Content of Medsel Systems of Wedge Medical B-H loop using Anchor ring. Determination of Thickness of the enamel coating on a wire by diffraction Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butter fringes. Measurement of Band gap energy- Thermistor Determination of Planck Constant LED Method Determination of Specific charge of an electron – Thomson's method. Determination of Specific charge of an electron – Thomson's method. Determination of Specific charge of an electron – Thomson's method. Determination of Compressibility of a liquid using Ultrasonics Determination of Conductivity - Four probe method. Measurement of Conductivity - Four probe method. Arc spectrum – Iron. Measurement of wavelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Ulfraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient. Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation ocalilator using UIT FET CS amplifier - Frequency response, input impedance, output impedance Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of apuage wave Triangular wave generator using IC 741 Construction of apuage wave triang	2. Deter	urement of (Viscosity of u	ineer expe	ulu – Mey	wedge N	; Mathod	1	
 Determination of Thickness of the enamel coating on a wire by diffraction Determination of Thickness of the enamel coating on a wire by diffraction Determination of Rydberg's Constant - Hydrogen Spectrum FP Etalon Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butler fringes. Measurement of Band gap energy- Thermistor Determination of Specific charge of an electron – Thomson's method. Determination of Specific charge of an electron – Thomson's method. Determination of Wavelength, Separation of wavelengths - Michelson Interferometer GM counter – Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Arc spectrum – Iron. Molecular spectra – AlO band. Measurement of Wavelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurement of Standing wave and standing wave co-efficient. Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern – Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Wien's bridge oscillator using Op-Amp. Construction of square wave Triangular wave generator using IC 741 Construction of square wave Triangular wave generator using IC 741<td>4 B-H1</td><th>α α α α α α α α α α</th><th>nchor ring</th><th>incai expa</th><th></th><td>wedge I</td><td>victilot</td><td>L</td><th></th>	4 B-H1	α	nchor ring	incai expa		wedge I	victilot	L	
 betermination of Rydberg's Constant - Hydrogen Spectrum FP Etalon Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butler fringes. Measurement of Band gap energy- Thermistor Determination of Specific charge of an electron – Thomson's method. Determination of Specific charge of an electron – Thomson's method. Determination of Compressibility of a liquid using Ultrasonics Determination of Conductivity - Four probe method. Ac ounter – Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Are spectrum – Iron. Melcular spectra – AIO band. Measurement of wavelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Wien's bridge oscillator using UC 741 for a given hysteresis- application as squarer. Construction of square wave Triangular wave generator using IC 741 Construction of audarture wave using IC 324 Construction of audarture wave using IC 324 Construction of audarture wave using IC 324 Construction of audarture wave us	5 Deter	mination of	Thickness of f	he enamel	coating on	a wire ł	w diffi	action	
 FP Etalon FP Etalon Determination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Buller fringes. Measurement of Band gap energy- Thermistor Determination of Planck Constant – LED Method Determination of Compressibility of a liquid using Ultrasonics Determination of Guercessibility of a liquid using Ultrasonics Determination of Wavelength, Separation of wavelengths - Michelson Interferometer GM counter – Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Are spectrum – Iron. Molecular spectra – AlO band. Measurement of wavelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Weasurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of important electrical characteristics of IC741. V - I Characteristics of different colours of LED. Study of attenuation characteristics of Phase shift network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Wien's bridge oscillator using Op-Amp. Construction of square wave Triangular wav	6. Deter	mination of	Rydberg's Co	nstant - Hy	vdrogen Sp	ectrum) j unn	uetion	
 Betermination of Thickness of air film Solar spectrum – Hartmann's formula. Edser and Butler fringes. Measurement of Band gap energy- Thermistor Determination of Specific charge of an electron – Thomson's method. Determination of Compressibility of a liquid using Ultrasonics Determination of Wavelength, Separation of wavelengths - Michelson Interferometer GM counter – Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Arc spectrum – Iron. Molecular spectra – AlO band. Measurement of wavelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier - Frequency response, input impedance, output impedance Study of attenuation characteristics of Plase shift network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Wien's bridge oscillator of square wave Triangular wave generator using IC 741 Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of Audarture wave using IC 324 Construction of Audarture wave using IC 324 Construction of Audarture wave using IC 324 Construction of Audarture wave using IC 741	7. FP Et	alon			/8~r				
 Butler fringes. Measurement of Band gap energy- Thermistor Determination of Planck Constant – LED Method Determination of Specific charge of an electron – Thomson's method. Determination of Compressibility of a liquid using Ultrasonics Determination of Wavelength, Separation of wavelengths - Michelson Interferometer G M counter – Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Arc spectrum – Iron. Molecular spectra – AIO band. Measurement of avelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Study the beam divergence, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of square wave Triangular wave generator using IC 741 Construction of aquadrature wave using IC 324 Construction of appresentor using IC 741 – application as frequency divider Construction of App-4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of R-S, clocked R-S and D-Filip flop using NAND gates Study of Jinary to Gray and Gray to Binary code conversion. Study of Jisiny to Gray an	8. Deter	mination of	Thickness of	air film.	- Solar sp	ectrum	– Hart	tmann's f	ormula. Edser and
 Measurement of Band gap energy- Thermistor Determination of Planck Constant – LED Method Determination of Specific charge of an electron – Thomson's method. Determination of Specific charge of an electron – Thomson's method. Determination of Wavelength, Separation of wavelengths - Michelson Interferometer GM counter – Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Are spectrum – Iron. Molecular spectra – AIO band. Measurement of Wavelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurement of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of attenuation characteristics of UC741. V- Characteristics of different colours of LED. Study of attenuation characteristics of Phase shift network and design of Wien's bridge oscillator using Op-Amp. Construction of square wave Triangular wave generator using IC 741 Construction of square wave Triangular wave generator using IC 741 Construction of Aupartare wave using IC 324 Construction of aquadrature wave using IC 324 Construction of Ap-Amp. 4bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of R-S, clocked R-S and D-Flip flop us	Butle	r fringes.			-				
 10. Determination of Planck Constant – LED Method 11. Determination of Specific charge of an electron – Thomson's method. 12. Determination of Compressibility of a liquid using Ultrasonics 13. Determination of Wavelength, Separation of wavelengths - Michelson Interferometer 14. GM counter – Characteristics, inverse square law and absorption coefficient. 15. Measurement of Conductivity - Four probe method. 16. Arc spectrum – Iron. 17. Molecular spectra – AlO band. 18. Measurement of Wavelength of Diode Laser / He – Ne Laser using Diffraction grating. 19. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. 20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. 21. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench 22. UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient 23. Construction of relaxation oscillator using UJT 24. FET CS amplifier- Frequency response, input impedance, output impedance 25. Study of attenuation characteristics of LED. 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. 29. Construction of square wave Triangular wave generator using IC 741 31. Construction of aquadrature wave using IC 324 32. Construction of apuare wave Triangular wave generator using IC 741 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of Arithmetic logi	9. Meas	urement of l	Band gap energ	gy- Therm	istor				
 Determination of Specific charge of an electron – Thomson's method. Determination of Compressibility of a liquid using Ultrasonics Determination of Wavelength, Separation of wavelengths - Michelson Interferometer GM counter – Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Arc spectrum – Iron. Molecular spectra – AlO band. Measurement of Wavelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of square wave Triangular wave generator using IC 741 Construction of a quadrature wave using IC 324 Construction of a quadrature wave using IC 324 Construction of Qi-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of Binary to Gray and Gray to Binary code conversion. Study of Jis, Da and T flip flops using IC 747/373 Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. Study o	10. Deter	mination of	Planck Consta	nt – LED	Method				
 Determination of Compressibility of a liquid using Ultrasonics Determination of Wavelength, Separation of wavelengths - Michelson Interferometer GM counter - Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Arc spectrum - Iron. Molecular spectra - AlO band. Measurement of wavelength of Diode Laser / He - Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy - Verification of Beer-Lambert's law and identification of wavelength maxima - Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of square wave Triangular wave generator using IC 741 Construction of aquadrature wave using IC 324 Construction of aquadrature wave using IC 741 for a given hysteresis- application as squarer. Construction of Qp-Amp. 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of Binary to Gray and Gray to Binary code conversion. Study of Binary to Gray and Gray to Binary code conversion. Study of J-K, D and T flip flops using IC 74181. Oconstruction of Encoder and Decoder circuits using ICs	11. Deter	mination of	Specific charg	e of an ele	ctron – Th	omson's	metho	od.	
 Determination of Wavelength, Separation of wavelengths - Michelson Interferometer GM counter - Characteristics, inverse square law and absorption coefficient. Measurement of Conductivity - Four probe method. Arc spectrum - Iron. Molecular spectra - AlO band. Measurement of wavelength of Diode Laser / He - Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy - Verification of Beer-Lambert's law and identification of wavelength maxima - Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of square wave Triangular wave generator using IC 741 Construction of quadrature wave using IC 324 Construction of pulse generator using IC 741 - application as frequency divider Construction of Diadera and Gray to Binary code conversion. Study of Binary to Gray and Gray to Binary code conversion. Study of J-K, D and T flip flops using IC 7476/7473 Arithmetic operations using IC 7481. Construction of Gray and Gray to Binary addition and subtraction. Study of Arithmetic logic unit using IC 74181. Construction of Gray and Gray to Binary code conversion. <li< td=""><td>12. Deter</td><th>mination of</th><th>Compressibilit</th><th>ty of a liqu</th><th>uid using U</th><td>ltrasonic</td><td>es i i</td><td></td><th></th></li<>	12. Deter	mination of	Compressibilit	ty of a liqu	uid using U	ltrasonic	es i i		
 14. GM counter – Characteristics, inverse square law and absorption coefficient. 15. Measurement of Conductivity - Four probe method. 16. Arc spectrum – Iron. 17. Molecular spectra – AlO band. 18. Measurement of wavelength of Diode Laser / He – Ne Laser using Diffraction grating. 19. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. 20. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. 21. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench 22. UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient 23. Construction of relaxation oscillator using UJT 24. FET CS amplifier- Frequency response, input impedance, output impedance 25. Study of important electrical characteristics of IC741. 26. V-1 Characteristics of different colours of LED. 27. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. 29. Construction of square wave Triangular wave generator using IC 741 21. Construction of a quadrature wave using IC 324 32. Construction of Quadrature wave using IC 324 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of J-K, D and T flip flops using IC 74773 37. Arithmetic logic unit using IC 74473 37. Arithmetic logic unit using IC 74483. 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 7416/7473 39. Construction of Encoder	13. Deter	mination of	Wavelength, S	eparation	of wavelen	igths - M	lichels	on Interfe	rometer
 Measurement of Conductivity - Four probe include. Arc spectrum – Iron. Molecular spectra – AIO band. Measurement of wavelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of attenuation characteristics of Vien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of a quadrature wave using IC 324 Construction of Dy-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of Binary to Gray and Gray to Binary code conversion. Study of J-K, D and T flip flops using IC 74773 Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. Study of Arithmetic logic unit using IC 74181. Construction of Gray and Gray to Binary code conversion. Study of Binary to Gray and Gray to Binary code conversion. Study of Arithmetic logic unit using IC 7476/7473 Arithmetic logic unit using IC 74181. Construction of A cudarature wave to Binary code conversion.	14. GM C	ounter – Ch	aracteristics, in	iverse squa	are law and	absorpt	tion co	efficient.	
 Ale spectral – AlO band. Molecular spectra – AlO band. Measurement of wavelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of important electrical characteristics of IC741. V- I Characteristics of different colours of LED. Study of attenuation characteristics of Phase shift network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of aquadrature wave using IC 324 Construction of pulse generator using the IC 741 – application as frequency divider Construction of Op-Amp-4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of J-K, D and T flip flops using IC 7476/7473 Arithmetic operations using IC 7418. Construction of Gray and Gray to Binary code conversion. Study of J-K, D and T flip flops using IC 7416/7473 Arithmetic logic unit using IC 7418. Construction of Encoder and Decoder circuits using IC's 	15. Meas	nootrum Ir	conductivity -	Four prob	e method.				
 Moasurement of wavelength of Diode Laser / He – Ne Laser using Diffraction grating. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of important electrical characteristics of IC741. V - I Characteristics of different colours of LED. Study of attenuation characteristics of Phase shift network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of square wave Triangular wave generator using IC 741 Construction of pulse generator using the IC 741 – application as frequency divider Construction of Dp-Amp - 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of R-S, clocked R-S and D-Flip flop using NAND gates Study of J-K, D and T flip flops using IC 7476/7473 Arithmetic logic unit using IC 74181. Construction of Encoder and Decoder circuits using IC's 	17 Mole	peculum – n cular spectra	a = AlO band						
 Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of important electrical characteristics of IC741. V - I Characteristics of different colours of LED. Study of attenuation characteristics of Phase shift network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of a quadrature wave using IC 324 Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of Binary to Gray and Gray to Binary code conversion. Study of J-K, D and T flip flops using IC 74773 Arithmetic operations using IC 74181. Construction of Erio Carlo and Decoder circuits using IC 98 	18. Meas	urement of y	wavelength of]	Diode Las	er / He – N	e Laser	using I	Diffraction	ı grating
 Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of important electrical characteristics of IC741. V- I Characteristics of different colours of LED. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of a quadrature wave using IC 324 Construction of Dy-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of Binary to Gray and Gray to Binary code conversion. Study of J-K, D and T flip flops using IC 7476/7473 Arithmetic operations using IC 74181. Construction of Encoder and Decoder circuits using IC S 	19. Deter	mination of	Diffraction par	ttern of lig	tht with circ	cular ape	erture u	ising Diod	le/He-Ne laser.
 Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient Construction of relaxation oscillator using UJT FET CS amplifier- Frequency response, input impedance, output impedance Study of important electrical characteristics of IC741. V- I Characteristics of different colours of LED. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of aquadrature wave using IC 324 Construction of pulse generator using the IC 741 – application as frequency divider Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of Binary to Gray and Gray to Binary code conversion. Study of J-K, D and T flip flops using IC 7476/7473 Arithmetic operations using IC 7481. Construction of Englise using IC 7481. Construction of Englise using IC 7481. Construction of application ging IC 7481. Construction of Respective and Binary addition and subtraction. Study of J-K, D and T flip flops using IC 74181. Construction of period and Decoder circuits using IC's 	20. Study	the beam d	ivergence, spor	t size and i	intensity pr	ofile of	Diode/	He-Ne las	ser.
 Receiver end transmitter behavior, Radiation Pattern - Microwave test bench 22. UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient 23. Construction of relaxation oscillator using UJT 24. FET CS amplifier- Frequency response, input impedance, output impedance 25. Study of important electrical characteristics of IC741. 26. V- I Characteristics of different colours of LED. 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. 30. Construction of a quadrature wave using IC 324 32. Construction of op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of J-K, D and T flip flop using IC 7473 37. Arithmetic operations using IC 74481. 39. Construction of Example Conversion using IC 74481. 39. Construction of Example Conversion using IC 74481. 	21. Meas	urements of	f Standing wa	ave and s	tanding w	ave co-	efficie	nt, Law	of Inverse square,
 22. UV-Visible spectroscopy – Verification of Beer-Lambert's law and identification of wavelength maxima – Extinction coefficient 23. Construction of relaxation oscillator using UJT 24. FET CS amplifier- Frequency response, input impedance, output impedance 25. Study of important electrical characteristics of IC741. 26. V- I Characteristics of different colours of LED. 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. 30. Construction of square wave Triangular wave generator using IC 741 31. Construction of pulse generator using the IC 741 – application as frequency divider 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using IC's 	Recei	ver end tran	smitter behavi	or, Radiati	on Pattern	- Microv	wave te	est bench	_
 maxima – Extinction coefficient 23. Construction of relaxation oscillator using UJT 24. FET CS amplifier- Frequency response, input impedance, output impedance 25. Study of important electrical characteristics of IC741. 26. V- I Characteristics of different colours of LED. 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. 30. Construction of square wave Triangular wave generator using IC 741 31. Construction of a quadrature wave using IC 324 32. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of Binary to Gray and Gray to Binary code conversion. 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using IC's 	22. UV-V	visible spect	roscopy – Veri	ification of	f Beer-Lam	bert's la	w and	identifica	tion of wavelength
 23. Construction of relaxation oscillator using UJT 24. FET CS amplifier- Frequency response, input impedance, output impedance 25. Study of important electrical characteristics of IC741. 26. V- I Characteristics of different colours of LED. 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. 30. Construction of square wave Triangular wave generator using IC 741 31. Construction of a quadrature wave using IC 324 32. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using IC's 	maxir	na – Extinct	tion coefficient	-					
 24. FET CS amplifier- Frequency response, input impedance, output impedance 25. Study of important electrical characteristics of IC741. 26. V- I Characteristics of different colours of LED. 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. 30. Construction of square wave Triangular wave generator using IC 741 31. Construction of a quadrature wave using IC 324 32. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using IC's 	23. Const	ruction of re	elaxation oscill	ator using	UJT				
 25. Study of important electrical characteristics of IC /41. 26. V- I Characteristics of different colours of LED. 27. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. 28. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. 30. Construction of square wave Triangular wave generator using IC 741 31. Construction of a quadrature wave using IC 324 32. Construction of Dp-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs 	24. FET C	CS amplifier	r- Frequency re	esponse, in	iput impeda	ance, out	tput im	pedance	
 V-1 Characteristics of different colours of LED. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of square wave Triangular wave generator using IC 741 Construction of a quadrature wave using IC 324 Construction of pulse generator using the IC 741 – application as frequency divider Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of Binary to Gray and Gray to Binary code conversion. Study of J-K, D and T flip flops using IC 7476/7473 Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. Study of Arithmetic logic unit using IC 74181. Construction of Encoder and Decoder circuits using ICs 	25. Study	OI Importat	nt electrical cha		CS OF IC /41	•			
 Study of attenuation characteristics of when's bridge network and design of when's bridge oscillator using Op-Amp. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of square wave Triangular wave generator using IC 741 Construction of a quadrature wave using IC 324 Construction of pulse generator using the IC 741 – application as frequency divider Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of Binary to Gray and Gray to Binary code conversion. Study of R-S, clocked R-S and D-Flip flop using NAND gates Study of J-K, D and T flip flops using IC 7476/7473 Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. Study of Arithmetic logic unit using IC 74181. Construction of Encoder and Decoder circuits using ICs 	20. V-10	naracteristi	cs of different	colours of W	LED. Vion's huid	ao notu	orle or	d docion	of Wion's bridge
 Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. Construction of square wave Triangular wave generator using IC 741 Construction of a quadrature wave using IC 324 Construction of pulse generator using the IC 741 – application as frequency divider Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) Study of Binary to Gray and Gray to Binary code conversion. Study of R-S, clocked R-S and D-Flip flop using NAND gates Study of J-K, D and T flip flops using IC 7476/7473 Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. Study of Arithmetic logic unit using IC 74181. Construction of Encoder and Decoder circuits using ICs 	27. Study	of allellua	n Amn	sucs of v	vien s ond	ge netw	OIK al	ia design	of when s bridge
 26. Study of alternation characteristics of Fluste sint network and design of Fluste sint oscillator using Op-Amp. 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. 30. Construction of square wave Triangular wave generator using IC 741 31. Construction of a quadrature wave using IC 324 32. Construction of pulse generator using the IC 741 – application as frequency divider 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs 	28 Study	of attenuat	ion characteris	tics of Ph	ase shift ne	etwork a	nd des	ion of Ph	ase shift oscillator
 29. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer. 30. Construction of square wave Triangular wave generator using IC 741 31. Construction of a quadrature wave using IC 324 32. Construction of pulse generator using the IC 741 – application as frequency divider 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs 	using	Op-Amp.					ina aco		use shift oscillator
 squarer. 30. Construction of square wave Triangular wave generator using IC 741 31. Construction of a quadrature wave using IC 324 32. Construction of pulse generator using the IC 741 – application as frequency divider 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs 	29. Const	ruction of	Schmidt trigge	er circuit	using IC 7	41 for	a give	n hysteres	sis- application as
 30. Construction of square wave Triangular wave generator using IC 741 31. Construction of a quadrature wave using IC 324 32. Construction of pulse generator using the IC 741 – application as frequency divider 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs 	squar	er.	66		U		0	5	11
 31. Construction of a quadrature wave using IC 324 32. Construction of pulse generator using the IC 741 – application as frequency divider 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs 	30. Const	ruction of s	quare wave Tri	angular w	ave genera	tor using	g IC 74	1	
 32. Construction of pulse generator using the IC 741 – application as frequency divider 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs 	31. Const	ruction of a	quadrature wa	ve using I	C 324	_			
 33. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs 	32. Const	ruction of p	ulse generator	using the	IC 741 – ap	plicatio	n as fre	equency d	ivider
 type) 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs 	33. Const	ruction of C	Op-Amp- 4 bit	Digital to	Analog co	nverter (Binary	Weighte	d and R/2R ladder
 34. Study of Binary to Gray and Gray to Binary code conversion. 35. Study of R-S, clocked R-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs 	type)	(D)	a						
 35. Study of K-S, clocked K-S and D-Flip flop using NAND gates 36. Study of J-K, D and T flip flops using IC 7476/7473 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs. 	34. Study	of Binary to	o Gray and Gra	ay to Bina	ry code cor	iversion.			
 30. Study of J-K, D and T hip hops using IC 7470/7475 37. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction. 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs. 	35. Study	OIK-S, Clo	cked K-S and I	J-Flip flop) using NA 1/16/11/12	ND gate	s		
 38. Study of Arithmetic logic unit using IC 74181. 39. Construction of Encoder and Decoder circuits using ICs. 	30. Study	ul J-K, D a	tions using IC	using IC . 7/82 / Li	1410/1413 thinary add	dition or	d cubt	raction	
39. Construction of Encoder and Decoder circuits using ICs	37. Anun 38. Study	of Arithmo	tic logic unit u	1405- 4-01 sing IC 74	i omary ad(.181	annon an	ia subl	action.	
	39 Const	ruction of F	Encoder and De	coder circ	nits using I	Cs			

	1. Practical Physics, Gupta and Kumar, Pragati Prakasan.									
	2. Kit Developed for doing experiments in Physics- Instruction manual,									
	R. Srinivasan K.R Priolkar, Indian Academy of Sciences.									
τεντ ροους	3. Electronic Laboratory Primer a design approach, S. Poornachandra,									
IEAI DOURS	B. Sasikala, Wheeler Publishing, New Delhi.									
	Electronic lab manual Vol I, K ANavas, Rajath Publishing.									
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition									
	1. Advanced Practical Physics, S.P Singh, PragatiPrakasan.									
	2. An advanced course in Practical Physics, D. Chattopadhayay, C.R Rakshit, New									
	Central Book Agency Pvt. Ltd									
REFERENCE	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy									
BOOKS	Edition.									
	4. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia)									
	Pvt. Ltd.									
	5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing.									

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus.	К2
CO2	Acquire knowledge of thermal behaviour of the matetials.	K1
CO3	Understand theoretical principles of magnetism through the experiments.	К2
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5
CO6	Conduct experiments on applications of FET and UJT	К4
CO7	Analyze various parameters related to operational amplifiers.	K4
CO8	Understand the concepts involved in arithmatic and logical circuits using IC's	К2
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K1
CO10	Analyze the applications of counters and registers	K4
K1 - Rei	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

Title of the	e Course	ENERG	ENERGY PHYSICS								
Catagony	EC I	Year	Ι	Credita	2	0	Course	2	23210/105		
Category	EC - 1	Semester	r I	Creatis		0	Code		252104105		
Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total		
per week		2	-		2	2 25 75			100		
			Pre-R	equisites							
Knowled	lge of convention	onal energy	resource	s							
			Learning	g Objective	es						
🗷 To le	arn about vario	us renewal	ole energy	sources.							
🗷 To k	now the ways o	f effectivel	ly utilizing	g the oceani	ic energy	/.					
🗷 To st	udy the method	l of harness	sing wind	energy and	its adva	ntages	5.				

- I o study the method of harnessing wind energy and its advantages.
 To learn the techniques useful for the conversion of biomass into useful energy.
 To know about utilization of solar energy.

UNITS	Course Details
UNIT I: INTRODUCTIO N TO ENERGY SOURCES	Conventional and non-conventional energy sources and their availability- prospects of Renewable energy sources- Energy from other sources-chemical energy-Nuclear energy- Energy storage and distribution.
UNIT II: ENERGY FROM THE OCEANS	Energy utilization–Energy from tides–Basic principle of tidal power– utilization of tidal energy – Principle of ocean thermal energy conversion systems.
UNIT III: WIND ENERGY SOURCES	Basic principles of wind energy conversion–power in the wind–forces in the Blades– Wind energy conversion–Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage–Applications of wind energy.
UNIT IV: ENERGY FROM BIOMASS	Biomass conversion Technologies– wet and dry process– Photosynthesis - Biogas Generation: Introduction–basic process: Aerobic and anaerobic digestion – Advantages of anaerobic digestion–factors affecting bio digestion and generation of gas- bio gas from waste fuel– properties of biogas-utilization of biogas.
UNIT V: SOLAR ENERGY SOURCES	Solar radiation and its measurements-solar cells: Solar cells for direct conversion of solar energy to electric powers-solar cell parameter-solar cell electrical characteristics- Efficiency-solar water Heater -solar distillation-solar cooking-solar greenhouse - Solar pond and its applications.
PROFESSIONA L COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 G.D. Rai, 1996, Non – convention sources of, 4th edition, Khanna publishers, New Delhi. S. Rao and Dr. Paru Lekar, Energy technology. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983). Solar energy, principles of thermal collection and storage by S. P. Sukhatme, 2nd edition, Tata McGraw-Hill Publishing Co. Lt., New Delhi (1997). Energy Technology by S. Rao and Dr. Parulekar.
REFERENC E BOOKS	 Renewable energy resources, John Twidell and Tonyweir, Taylor and Francis group, London and New York. Applied solar energy, A. B. Meinel and A. P. Meinal John Twidell and Tony Weir, Renewable energy resources, Taylor and Francis group, London and New York. Renewal Energy Technologies: A Practical Guide for Beginners C.S. Solanki-PHI Learning Introduction to Non-Conventional Energy Resources -Raja et. al., Sci. Tech Publications

	1. <u>https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&pri</u>
	ntable=1
WEB	2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
SOURCES	3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy
	4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
	5. https://www.acciona.com/renewable-energy/solar-energy/

At the end of the course, the student will be able to:

CO1	To identify various forms of renewable and non-renewable energy sources	K1
CO2	Understand the principle of utilizing the oceanic energy and apply it for practical applications.	K2
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	K3
CO4	Distinguish aerobic digestion process from anaerobic digestion.	K3,
		K4
	Understand the components of solar radiation, their measurement and apply	K2,
CO5	them to utilize solar energy.	K5
K1 - R	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

Title of	the Cou	ourse MATERIAL SCIENCE									
Categ	EC - I	Y	'ear	Ι	Credits	2	Course	e Code	232104106		
0ry Instruct	tional	S	emester	I	Lab	- Total	~		232104100		
Hours p	ber week		Lecture	Tutorial	Practice		CIA	External	Total		
			2	- Pi	 re-Requisity	2	25	75	100		
► E	Basic knowledge on different types of materials										
Learning Objectives											
æ T	o gain kr	nowl	ledge on opt	oelectronic	materials						
	o learn a o unders	bout tand	the process	ocessing an	d advanced	ceramics	material	s			
æ T	o gain ki	nowl	ledge on the	fabrication	of composi	te materia	ls				
	o learn a	bout	shape mem	ory alloys,	metallic gla	sses and n	anomater	rials			
U.	N115		Importance	of optical	materials – 1	oroperties:	Band ga	p and lattic	e matching –		
UN	NIT I:		optical abs	orption and	emission -	- charge i	njection,	quasi-Ferr	ni levels and		
OPTOI	ELECTR NIC	0	recombinat	ion – opti structures:	cal absorpt	ion, loss	and gair	n. Optical	processes in		
MAT	ERIALS		semicondue	ctors. Ligh	t propagatio	n in mate	erials – I	Electro-opt	ic effect and		
* **			modulation	, electro-ab	sorption mo	dulation –	- exciton	quenching.			
UI CEI	RAMIC		ceramics:	iocessing: j zirconia. al	powaer prod lmina, silico	cessing, m on carbide	uuing an e, tungste	en carbide	– structural – electronic		
MAT	ERIALS		ceramics -	refractories	s – glass and	glass cera	mics				
			Polymers a	and copoly with polymer	mers – mo rization – po	lecular w	eight me	asurement	– synthesis:		
	NIT III		temperature and its measurement – viscoelasticity – polymer processing								
MAT	ERIALS		techniques – applications: conducting polymers, biopolymers and high								
			temperature	e polymers.				<u> </u>			
UN	NIT IV		behavior – fabrication methods of polymer matrix composites and metal								
COM MAT	POSITE		matrix composites – carbon/carbon composites: fabrication and applications.								
			Shape men	nory alloys:	: mechanism	ns of one-v	way and	two-way sł	nape memory		
TIN	IIT V.		effect, reverse transformation, thermo-elasticity and pseudo-elasticity,								
UN N	NII V: NEW		and stability, examples and mechanical behavior - nanomaterials.								
MAT	ERIALS		classification, size effect on structural and functional properties, processing								
			and proper	ties of Nan	o crystalline	e materials	, single	walled and	multi walled		
			varoon nan								
PROF	ES Exp	bert	Lectures,	Online Se	eminars -	Webinars	on Inc	lustrial Int	eractions/Visits,		
COM	\mathbf{PO} Ac	coun	tability and	Patriotism	lipioyable al		unication	SKIII EIIIR	incement, Social		
NENT	ſS	т			1 . 1	· ·		<u> </u>	, , , .		
	1	Jas Ca	prit Singh, 1 mbridge Un	Electronic a iversity Pre	and optoelec ess, 2007	etronic pro	perties o	t semicond	uctor structures,		
	2	Р. 1	K. Mallick.	Fiber-Reinf	forced Com	posites. CI	RC Press	, 2008.			
TEX BOOL	\mathbf{T} 3.	V.	Raghavan, 1	2003, Mate	rials Science	e and Eng	gineering	, 4 th Editio	n, Prentice- Hall		
BOOI	4	G.I	K. Narula, k	K.S. Narula	and V.K. G	upta, 1988	8, Materi	als Science	, Tata McGraw-		
	Hill						1 .				
	5	М. В.	S. Murtv.	$\frac{1, 2002, Mat}{P. Shank}$	ar, B. Rai.	$\frac{ce, 5}{B. B. R}$	ath and	J. Murda	na Agencies y. Textbook of		
			Nanoscience	e and Nano	technology.	Springer-	Verlag, 2	2012.			
BEEEI	2. RE	K.	Yamauchi, Super Flagt	I. Ohkata,	K. Tsuchiy	a and S. N	Miyazaki	(Eds). Sha	pe Memory and head Publishing		
NETEI			Limited, 20	11. Anoys.	reennoiogi	cs and A	pheation	us. w 000	illad i uuiisiiiig		
BOOK	KS 3.	La	wrence H. V	Van Vlack,	1998. Elem	ents of Ma	aterials S	cience and	Engineering, 6 th		
	4	H.	Edition, Sec	ond ISE rej H. Luth. 20	print, Addise 02, Solid St	on-wesley ate Physic	∕. ≈s – An I	ntroduction	to Principles of		
			Materials Sc	cience, 2^{nd} I	Edition, Spri	inger.					

	5. D. Hull & T. W. Clyne, An introduction to composite materials, Cambridge
	University Press, 2008.
	1. <u>https://onlinecourses.nptel.ac.in/noc20_mm02/preview</u>
WEB	2. <u>https://nptel.ac.in/courses/112104229</u>
SOURCE	3. <u>https://archive.nptel.ac.in/courses/113/105/113105081</u>
SUCKCE	4. <u>https://nptel.ac.in/courses/113/105/113105025/</u>
8	https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science/Supplemental_Modules_(Materials_Science/Supplemental_Modules_(Materials_Science/Supplemental_Modules_(Materials_Science/Supplemental_Modules_(Materials_Science/Supplemental_Modules_(Materials_Science/Supplemental_Modules_(Materials_Science/Supplemental_Science/Supplemental_Modules_(Materials_Science/Supplemental_Science/Science
	rials_Science)/Electronic_Properties/Lattice_Vibrations

At the end of the course, the student will be able to:

CO1	Acquire knowledge on optoelectronic materials	K1
CO2	Be able to prepare ceramic materials	K3
CO3	Be able to understand the processing and applications of polymeric materials	K2,
		K3
CO4	Be aware of the fabrication of composite materials	K5
CO5	Be knowledgeable of shape memory alloys, metallic glasses and	V1
	nanomaterials	NI NI
K1 - Rer	nember: K2 – Understand: K3 - Apply: K4 - Analyze: K5 - Evaluate:	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

Title of	f the Cour	se	MEDICAI	PHYSICS						
Cate gory	AECC I	Year Semester	I I	Credits	2	Cour	se Code	232104107		
Instru	ctional	Lecture	Tutorial	Lab Practice	Total	CIA	External	Total		
per we	eek	2	-		2	25	75	100		
F 1	Pre-Requisites									
Fundai	mentals of	physiological	concepts, B Lear	asics of inst ning Object	ruments p ives	rinciple	2,			
≻ To	understan	d the major ap	plications of	f Physics to	Medicine					
≻ To	study the	aid of differen	t medical de	evices such a	as X-ray n	nachine	es, gamma c	amera,		
\succ To	outline the	e principles of	Physics of a	ance. different me	dical radia	ation de	evices and t	heir modern		
adv	vances, esp	becially in med	lical radiatio	on therapy a	nd differe	nt appli	cations in r	nedical		
phy To	ysics.	the ideas of D	diagraphy							
\succ To	form a go	od base for fur	ther studies	like researc	h.					
UN	NITS			Cou	irse Detai	ils				
UN	IT I:	Electromagn	netic Spectr	um – Proc	luction of	f X-Ra	iys – X-Ra	ay Spectrum –		
X-RAY	YS AND	Ray Tube D	Design – Th	ermistors –	photo ele	ectric tr	ansducers	– Photo voltaic		
IKANS	DUCERS	cells – photo	o emissive c	ells –Photoc	onductive	e cells–	piezoelectr	ic transducer		
UN BL	IT II: OOD	Introduction	snhvon	nomanomete	er – Mea	isureme	ent of hear	rt rate – basic		
PRES	SSURE	principles	of electro	cardiogram	(ECG)	-Basic	principle	es of electro-		
MEASU	JREMEN	neurography	∕ (ENG) – B	asic princip	les of mag	gnetic r	esonance in	naging (MRI).		
UNI RADI PHY	T III: ATION /SICS	Radiation U Biological E – Interactio Radiation I Counter – Se	fnits – Expo Effectiveness n of radiat Detectors – cintillation	osure – Abso s –Effective ion with M Fhimble Ch Counter	orbed Dos Dose – S latter – I aamber –	se – Ra lievert (Linear Conde	d to Gray - (Sv) – Inve Attenuation enser Chan	- Kera Relative rse Square Law 1 Coefficient – 1bers – Geiger		
UNI MEI IMA PHY	T IV: DICAL GING ZSICS	Radiologica – Film proce Function – Resonance Principle, Fu	l Imaging – essing – Flu Display – Imaging – unction and	Radiograph oroscopy – (Mammogr Thyroid U display)	y – Filters Computed aphy – J Jptake Sy	s – Gric I Tomo Ultrasou vstem -	ls – Cassett graphy Scar und Imagir – Gamma	e – X-Ray Film nner – Principal ng – Magnetic Camera (Only		
UN RADI PROT	IT V: ATION ECTION	Principles of Somatic – G Devices – T	f Radiation enetic Stock LD Film Ba	Protection – hastic and D ldge – Pocke	Protectiv eterminis et Dosime	e Mater tic Effe ter	rials – Radi ct – Person	ation Effects – al Monitoring		
PROFE COMP	SSIONAL ONENTS	Expert Lect Competitive Enhancemen	ures, Online Examinant, Social Ac	e Seminars ations, Er ccountability	- Webinai nployable and Patr	rs on Ir and iotism	ndustrial Int Commu	teractions/Visits inication Skil		
TEXT	BOOKS	 Dr. K. T Publishin Curry, Do <i>Lippincon</i> FM Khan D. J. De Elsevier S R.S. Khan New Dell 	 Dr. K. Thayalan , <i>Basic Radiological Physics</i>, Jayapee Brothers Medical Publishing Pvt. Ltd. New Delhi, 2003. Curry, Dowdey and Murry, <i>Christensen's Physics of Diagnostic Radiology: - Lippincot</i>Williams and Wilkins, 1990. FM Khan, <i>Physics of Radiation Therapy</i>, William and Wilkins, 3rd ed, 2003. D. J. Dewhurst, <i>An Introduction to Biomedical Instrumentation</i>, 1st ed, Elsevier Science, 2014. R.S. Khandpur, <i>Hand Book of Biomedical Instrumentations</i>, 1st ed, TMG, New Delhi, 2005. 							
REFE BO	RENCE OKS	 Muhamm Internation Daniel Ji Universit Anders H Elsevier S 	nad Maqboo onal Publish irák, Františ y, Karolinu Brahme, <i>Co</i> Science, 201	l, <i>An Introa</i> ing, 2017. šekVítek, <i>B</i> m Press, 201 omprehensiv 4.	luction to asics of .8 e Biomea	Medica Medica lical P	al Physics, I Physics, hysics, Vol	1st ed, Springer 1st ed, Charles lume 1, 1st ed		

	4.	K. Venkata Ram, Bio-Medical Electronics and Instrumentation, 1st ed,
		Galgotia Publications, New Delhi, 2001.
	5.	John R. Cameron and James G. Skofronick, 2009, Medical Physics, John
		Wiley Interscience Publication, Canada, 2nd edition.
	1.	https:nptel.ac.in/courses/108/103/108103157/
	2.	https://www.studocu.com/en/course/university-of-technology-
		sydney/medical-devices-and-diagnostics/225692
WEB SOURCES	3.	https://www.technicalsymposium.com/alllecturenotes_biomed.html
	4.	https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentation-bi-
		by-deepraj-adhikary/78
	5.	https://www.modulight.com/applications-medical/

At the end of the course, the student will be able to:

CO1	Learn the fundamentals, production and applications of X-rays.	K1
CO2	Understand the basics of blood pressure measurements. Learn about sphygmomanometer, EGC, ENG and basic principles of MRI.	К2
CO3	Apply knowledge on Radiation Physics	K3
CO4	Analyze Radiological imaging and filters	K4
CO5	Assess the principles of radiation protection	K5
K1 - Rer	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

Title of the	e Course	STATIS	FICAL N	IECHANI	CS				
Part		Α							
Category	Core 4	Year	Ι	Credits	4	С	ourse		232104201
Cutegory		Semester	· II				ode		
Instruction	nal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total
per week		6	-		6	25	75		100
			Pre-	Requisites					
Laws of	thermodynamic	s, phase tr	ansition,	entropy, er	sembles	s, parti	tion fund	ctio	n, classical and
quantum sta	atistics, thermal	equilibriur	n, Brown Learni	an motion	VAS				
🖉 To a	cquire the know	wledge of t	hermodyn	amic poten	tials and	l to un	derstand	pha	se transition in
ther	modynamics	C	•	1				•	
🗷 Toi	dentify the rela	tionship be	tween stat	istic and th	ermodyr	amic c	uantities		1 11
	comprehend the	concept of	partition	function, ca	anonical	and gr	and cano	nic	al ensembles
stati	stics	nentai knov	wiedze do	out the the	e types (,			
🗷 To	get in depth l	knowledge	about pl	nase transit	ions an	d fluc	tuation of	of t	hermodynamic
prop	perties that vary	with time			D				
	NT15	Thermodyn	amic note	ntials Des	ourse De	ibrium	Gibb'a	nh	aca rula Dhaca
UN	IT I:	ransitions a	and Ehren	fest's class	ification	s –Thi	rd law of	s pn f Tł	nermodynamics.
PH TRAN	IASE SITIONS	Order parar	neters – I	.andau's th	eory of j	phase t	ransition	- (Critical indices -
		Scale transf	ormations	and dimen	sional a	nalysis			<u> </u>
UN. Stati	IT II:	Foundations	s of statis	tical mecha	nics - Sj	pecific En	ation of s	stat	es of a system -
MECHA	NICS AND	statistics an	d thermo	dynamics –	- Entrop	y of a	n ideal g	as 1	using the micro
THERM	ODYNAMI d	canonical er	nsemble -	Entropy of	mixing	and Gi	bb's para	adoz	x.
	CS								
	IT III: ICALAND 7	Fraiectories	and den	sity of stat	es - Lio	uville'	s theorem	m _	Canonical and
GR	AND	grand canor	nical ense	mbles - Pa	rtition f	unctior	i - Calcu	ılati	on of statistical
CANC	DNICAL	quantities -	Energy an	nd density f	luctuatio	ons.			
ENSE	MBLES					9		<u> </u>	
UNI CLASSI	TIV:	Density ma	trix - Sta Maxwell-	itistics of e Boltzmann	nsemble statistic	s - Sta s - Fe	atistics o rmi_Dira	ot 11 C st	ndistinguishable
QUA	NTUM	Fermi gas	– Deger	heracy - B	ose-Eins	stein s	tatistics	-]	Plank radiation
STAT	ISTICS 1	formula - Id	leal Bose	gas - Bose-	Einstein	conde	nsation.		
TIN		Cluster exp	ansion for	a classical	gas - Vi	rial eq	uation of	sta	te – Calculation
REAL	$\begin{array}{c} \mathbf{MII} \mathbf{V}: \\ \mathbf{L} \mathbf{GAS} \end{array} \qquad 1 $	field theorie	virial coe	sing model	ne cluste	r expa	nsion - Is and one d	sing dim	ensions - Exact
ISING	MODEL	solutions i	n one	dimension.	Correl	ation	of spac	e-ti	ime dependent
A	ND 1	luctuations	- Fluctua	ations and t	ransport	pheno	mena -]	Bro	wnian motion -
FLUCTU	JATIONS	Langevin's	theory -	Fluctuation	-dissipat	ion the	eorem -	The	Fokker-Planck
TIN	<u>тт ул.</u>	Export I	oturos	Onlina	aminara		Wahinar	•c	on Industrial
PROFF	II VI:	Interactions	/Visits.	Competiti	ve Ex	- amina	tions.	s Em	plovable and
COMP	PONENTS	Communica	ation Skill	Enhancem	ent, Soc	ial Acc	ountabili	ity a	and Patriotism
		1. S. K	. Sinha, 1	990, Statist	ical Mec	hanics	, Tata M	cGı	raw Hill, New
		Delhi.	- A	1 135	10		,. ,	,	
		2. B. K Edition N	. Agarwa New Agel	1 and M. E1 Internations	sner, 199	98, Sta Delhi	nstical M	iecl	nanics, Second
		Edition New Age International, New Delhi. 3. J. K. Bhattacharjee, 1996, <i>Statistical Mechanics</i> : An Introductory							
TEXT	BOOKS	Text, Allied Publication, New Delhi.							
		4. F. R	eif, 1965,	Fundamen	tals of S	tatistic	al and Ti	heri	mal Physics,
		5. M. I	-mii, ive K. Zemans	w 101K. sky, 1968. i	Heat and	l Thern	ıodvnam	ics	5 th edition.
		McGrav	v-Hill Nev	w York.				,	

	1.	R. K.	Pathria,	1996,	Statistical	Mechanics,	2^{nd}	edition,	Butter			
		WorthHeinemann, New Delhi.										
	2.	. D. I	andau an	d E. M	. Lifshitz, 1	969. Statistic	al Ph	vsics. Per	rgamon			
		Press, Oxford.										
REFERENCE	3.	C. Huai	ng. 2002.	Statistic	al Mechania	s. Taylor and	Franc	cis. Lond	on			
BOOKS	4.	N. Gre	iner. L. N	leise an	d H. Stoecke	er. <i>Thermody</i>	namic	s and Sta	itistical			
		Mechar	<i>vics</i> Sprin	ger Ver	lang New Y	ork		5 61161 516	msneur			
	5		Cunto		2002 Th	Dirk.		alea and	Alliad			
	Э.	А. В.	Gupta, I	н. коу	, 2002, <i>Th</i> e	ermai Physic	s, во	oks and	Amea,			
		Kolkata	l.									
		. <u>http</u>	s://byjus.c	com/che	mistry/third	-law-of-therm	odyna	amics/				
		2. <u>http</u>	s://web.st	anford.e	du/~peastma	an/statmech/t	hermo	dynamic	s.html			
		3. http	s://en.wik	iversity	.org/wiki/Sta	atistical_mech	nanics	_and_the	rmody			
WEB SOURCES		nam	nics		-							
		http	s://en.wik	ipedia.c	org/wiki/Gra	nd_canonical	_ense	<u>mble</u>				
		$\frac{1}{http}$	s://en.wik	ipedia.c	org/wiki/Isin	g model						

At the end of the course the student will be able to:

CO1	To examine and elaborate the effect of changes in thermodynamic quantities on the states of matter during phase transition	K5
CO2	To analyze the macroscopic properties such as pressure, volume, temperature, specific heat, elastic moduli etc. using microscopic properties like intermolecular forces, chemical bonding, atomicity etc. Describe the peculiar behaviour of the entropy by mixing two gases Justify the connection between statistics and thermodynamic quantities	K4
CO3	Differentiate between canonical and grand canonical ensembles and to interpret the relation between thermodynamical quantities and partition function	K1
CO4	To recall and apply the different statistical concepts to analyze the behaviour of ideal Fermi gas and ideal Bose gas and also to compare and distinguish between the three types of statistics.	K4, K5
CO5	To discuss and examine the thermodynamical behaviour of gases under fluctuation and also using Ising model	K3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

Title of the	e Course	QUANT	UM MEC	CHANICS -	- I							
Part		A										
Category	Core 5	Year Semeste	I r II	Credits	4	C C	ourse ode	2.	32104202			
Instruction	nal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total			
per week		6	-		6	25	75		100			
	1 0	·· 0.1 1	Pre-R	equisites		1.00	· .·					
Newton	s laws of mo	tion, Schrödi	I earning	ation, integ	gration, c	lillerer	itiation.					
 To a quan To d To d To fa partia To e see ti To d 	 To develop the physical principles and the mathematical background important to quantum mechanical descriptions. To describe the propagation of a particle in a simple, one-dimensional potential. To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential. To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation. 											
UN	ITS			Cours	se Detai	S						
UNI BAS FORMA	T I: 6 SIC 1 ALISM 1	Interpretation of the wave function – Time dependent Schrodinger equation –Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation										
UNIT II DIMENS AND TI DIMENS ENERGY VAI PROBI	I: ONE SIONAL HREE- SIONAL Z EIGEN LUE LEMS	Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator										
UNIT GENE FORMA	III: I CRAL I ALISM I	Dirac notation Heisenberg representation conservation	n – Equa representa n – Mo laws – Un	tions of mo tion – Inte omentum i itary transfe	otions – craction represen ormatior	Schroo repres tation 1 – Par	dinger reservation entation – System ity and the	epres — mme	sentation – Coordinate etries and reversal			
UNII APPROX N MET	TIV: IMATIO HODS	Time indepen – Degenerate and excited approximatio quantization	ndent pert energy le state – n – Co – Applicat	urbation the evels – Star Variation nnection f ion to simp	eory for k effect method ormulae le harmo	non-de in Hy – H (no onic os	egenerat drogen a lelium a derivat cillator.	e en atom atom ion)	ergy levels 1 – Ground 1 – WKB – WKB			
UNI ANGU MOME	FV: JLAR NTUM	Eigenvalue s and their alg Addition of a symmetry of Pauli's exclu	pectrum o ebra – Ma ngular mo wave fu sion princi	f general an atrix represe omenta – Co anctions – ple.	ngular m entation G Coeffi Constru	oment – Spir cients ction	tum – La n angula – Symm of wave	adde r mo netry e-fun	r operators omentum – and anti – ctions and			
PROFES COMPO	SIONAL I INENTS (Expert Lec Interactions/ Communicat Patriotism	tures, Or Visits, C Ion Skill	nline Sem competitive Enhance	inars - Exam ment,	- We inatior Social	binars ns, Em Accou	on ploy untal	Industrial vable and bility and			
TEXTI	BOOKS	 P. M. Mech Delhi G. An India, David editio SL G 1st Ed 	Mathews anics, 2 nd , 2010. uldhas, Q New Dell J Griffi n, Pearson upta and I ition, S.Cl	and K. Veledition(37th uantum Me ni, 2009. ths, Introd a, 2011. D Gupta, A nand& Co.,	enkatesa h Repri chanics, uction t dvanced New De	n, A nt),Tat 2nd e o Qua Quan lhi, 19	Fext boo a McG dition, F antum M tum The 82.	ok o raw- Prent Mech	t Quantum Hill, New ice Hall of nanics. 4th and Fields,			

	5. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and
	Applications, 4 ^m Edition, Macmillan, India, 1984.
	1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley
	and Sons, New York, 1970.
	2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley
	Eastern Ltd, New Delhi, 1985.
REFERENCE	3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st
BOOKS	edition, Pergomon Press, Oxford, 1976.
	4. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd.,
	Kolkata, 1999.
	5. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science
	International Ltd, Oxford, 2011.
	1. http://research.chem.psu.edu/lxjgroup/download_files/chem565-
	c7.pdf
	2. http://www.feynmanlectures.caltech.edu/III_20.html
WEB SOURCES	3. http://web.mit.edu/8.05/handouts/jaffe1.pdf
	4. https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectu
	res/Lecture_ 1.pdf
	5. https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf

At the end of the course the student will be able to:

CO1	Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics	K1, K5
CO2	Is able to apply and analyze the Schrodinger equation to solve one	K3,
	dimensional problems and three dimensional problems	K4
CO3	Can discuss the various representations, space time symmetries and	K1
	formulations of time evolution	N1
CO4	Can formulate and analyze the approximation methods for various	K4,
	quantum mechanical problems	K5
CO5	To apply non-commutative algebra for topics such as angular and spin	K3,
	angular momentum and hence explain spectral line splitting.	K4
K1 - R4	amember: K2 – Understand: K3 - Apply: K4 - Applyze: K5 – Evaluate	

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

PartACategoryCore 6 PYearICredits4Course Code232104203Instructional Hours per weekLectureTutorialLab PracticeTotalCIAExternalTotal $$ 1562575100Pre-RequisitesKnowledge and handling of basic general and electronics experiments of PhysicsLearning Objectives \measuredangle To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. \measuredangle To calculate the thermodynamic quantities and physical properties of materials. \And To observe the applications of FET and UJT. \twoheadleftarrow To study the different applications of operational amplifier circuits. \bigstar To learn about Combinational Logic Circuits and Sequential Logic CircuitsCourse DetailsCourse Details
CategoryCore 6 PYearICredits4Course Code232104203Instructional Hours per weekLectureTutorialLab PracticeTotalCIAExternalTotal $$ 1562575100Pre-RequisitesKnowledge and handling of basic general and electronics experiments of PhysicsLearning ObjectivesCourse quations.
Category Core of 1 Semester II Creatins 4 Code 232104203 Instructional Hours per week Lecture Tutorial Lab Practice Total CIA External Total 1 5 6 25 75 100 Pre-Requisites Knowledge and handling of basic general and electronics experiments of Physics Learning Objectives Image: Structure of the concept of mechanical behavior of materials and calculation of same using appropriate equations. To calculate the thermodynamic quantities and physical properties of materials. To analyze the optical and electrical properties of materials. To observe the applications of FET and UJT. To study the different applications of operational amplifier circuits. To learn about Combinational Logic Circuits and Sequential Logic Circuits Course Details Course Details
Instructional Hours per weekLectureTutorialLab PracticeTotalCIAExternalTotal1562575100Pre-RequisitesKnowledge and handling of basic general and electronics experiments of PhysicsLearning Objectives✓To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.✓ To calculate the thermodynamic quantities and physical properties of materials.✓ To analyze the optical and electrical properties of materials.✓ To study the different applications of FET and UJT.✓ To learn about Combinational Logic Circuits and Sequential Logic CircuitsCourse DetailsCourse DetailsCourse Details
per week 1 5 6 25 75 100 Pre-Requisites Knowledge and handling of basic general and electronics experiments of Physics Learning Objectives
Pre-Requisites Knowledge and handling of basic general and electronics experiments of Physics Learning Objectives
Knowledge and handling of basic general and electronics experiments of Physics Learning Objectives Image: Strain Concept of Mechanical behavior of materials and calculation of same using appropriate equations. Image: To calculate the thermodynamic quantities and physical properties of materials. Image: To analyze the optical and electrical properties of materials. Image: To observe the applications of FET and UJT. Image: To study the different applications of operational amplifier circuits. Image: To learn about Combinational Logic Circuits and Sequential Logic Circuits Image: Course Details Image: Course Details
Learning Objectives ✓ To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. ✓ To calculate the thermodynamic quantities and physical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To observe the applications of FET and UJT. ✓ To study the different applications of operational amplifier circuits. ✓ To learn about Combinational Logic Circuits and Sequential Logic Circuits Course Details (Any Twelve Experiments)
 To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. To calculate the thermodynamic quantities and physical properties of materials. To analyze the optical and electrical properties of materials. To observe the applications of FET and UJT. To study the different applications of operational amplifier circuits. To learn about Combinational Logic Circuits and Sequential Logic Circuits (Any Twelve Experiments)
 using appropriate equations. ✓ To calculate the thermodynamic quantities and physical properties of materials. ✓ To analyze the optical and electrical properties of materials. ✓ To observe the applications of FET and UJT. ✓ To study the different applications of operational amplifier circuits. ✓ To learn about Combinational Logic Circuits and Sequential Logic Circuits Course Details (Any Twelve Experiments)
 To calculate the thermodynamic quantities and physical properties of materials. To analyze the optical and electrical properties of materials. To observe the applications of FET and UJT. To study the different applications of operational amplifier circuits. To learn about Combinational Logic Circuits and Sequential Logic Circuits Course Details (Any Twelve Experiments)
 To analyze the optical and electrical properties of materials. To observe the applications of FET and UJT. To study the different applications of operational amplifier circuits. To learn about Combinational Logic Circuits and Sequential Logic Circuits Course Details (Any Twelve Experiments)
 To observe the applications of FET and UJT. To study the different applications of operational amplifier circuits. To learn about Combinational Logic Circuits and Sequential Logic Circuits Course Details (Any Twelve Experiments)
To study the different applications of operational amplifier circuits.
Course Details (Any Twelve Experiments)
(Any Twelve Experiments)
1. Determination of Young's modulus and Poisson's ratio by Elliptical fringes - Cornu
Method
2. Determination of Stefan's constant of radiation from a hot body
3. Measurement of Coefficient of linear expansion- Air wedge Method
4. Measurement of Susceptibility of liquid - Quincke's method
5. B-H curve using CRU 6 Magnutement of Magnetic Suscentibility – Guoy's method
7 LG Plate
8. Arc spectrum: Copper
9. Determination of Solar constant
10. Determination of e/m - Millikan's method
11. Miscibility measurements using ultrasonic diffraction method
12. Determination of Thickness of thin film Michelson Interferometer
13. GM counter – Feather's analysis: Range of Beta rays
14. Todine absorption spectra 15. Molecular spectra – CN bands
16. Determination of Refractive index of liquids using diode Laser/He – Ne Laser
17. Determination of Numerical Apertures and Acceptance angle of optical fibers using Las
Source.
18. Measurement of Dielectricity - Microwave test bench
19. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration ar
carrier mobility
20. Interpretation of vibrational spectra of a given material
21. Determination of 1- v Characteristics and efficiency of solar cell. 22 IC 7490 as scalar and seven segment display using IC 7447
22. For $\gamma = 0$ as sectial and sector segment display using FC $\gamma = 1$ 23. Solving simultaneous equations – IC 741 / IC LM324
24. Op-Amp – Active filters: Low pass, High pass and Band pass filters (Second Order) Batte
worth filter
25. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
26. Construction of second order butter worth multiple feedback narrow band pass filter
27. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronou
28 Construction of square wave generator using IC 555 Study of VCO
29. Construction of Schmidt trigger circuit using IC 555 for a given hysteresis – Application
squarer
30. Construction of pulse generator using the IC 555 – Application as frequency divider
31. BCD to Excess-3 and Excess 3 to BCD code conversion
32. Study of binary up / down counters - IC 7476 / IC7473
33 Shift register and Ring counter and Johnson counter- IC 7476/IC 7474
34. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
34. Study of synchronous parallel 4-bit binary up/down counter using IC 74193 35. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493 36. Study of Modulus Counter

	1. Practical Physics, Gupta and Kumar, Pragati Prakasan								
	2. Kit Developed for doing experiments in Physics- Instruction manual, R.								
TEXT BOOKS	Srinivasan K.R Priolkar, Indian Academy of Sciences								
	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern								
	Economy Edition.								
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing								
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition								
	1. An advanced course in Practical Physics, D. Chattopadhayay,								
	C.R Rakshit, New Central Book Agency Pvt. Ltd								
	2. Advanced Practical Physics, S.P Singh, Pragati Prakasan								
DEFEDENCE	3. A course on experiment with He-Ne Laser, R. S. Sirohi, John Wiley & Sons								
REFERENCE	(Asia) Pvt. ltd								
BOOKS	4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya								
	Publishing								
	5. Electronic Laboratory Primer a design approach, S. Poornachandra,								
	B. Sasikala, Wheeler Publishing, New Delhi								

At the end of the course the student will be able to:

	ind of the course the student will be usic to:	
CO1	Understand the strength of material using Young's modulus	K2
CO2	Acquire knowledge of thermal behaviour of the materials	K1
CO3	Understand theoretical principles of magnetism through the experiments.	K2
CO4	Acquire knowledge about arc spectrum and applications of laser	K1
CO5	Improve the analytical and observation ability in Physics Experiments	K4
CO6	Conduct experiments on applications of FET and UJT	K5
CO7	Analyze various parameters related to operational amplifiers	K4
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	K2
CO0	Acquire knowledge about Combinational Logic Circuits and Sequential Logic	K3
0.09	Circuits	КJ
CO10	Analyze the applications of counters and registers	K4
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

K1 - Remember:	K2 – Understand: K3	3 - Apply: K4 -	Analyze: K5 – H	Evaluate
,		· · · · · · ·		

K1 - Remember; K2 – Understand; K3 - Apply; MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	S	S	2	2	2	3	3
CO2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	S	S	2	2	2	3	3
CO7	2	2	S	S	S	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

Title of the (Course	NONLIN	EAR DY	NAMICS						
Part		Α	1	T	1					
Category	EC - II	Year Semester	I · II	Credits	3	Co Co	ourse ode	2	232104204	
Instructiona	l Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Externa	al	Total	
per week		4	-		4	25	75		100	
			Pre-	Requisites						
Basics of I waves, an	Numerical mo d Basics of c	ethods and communicat	Differenti ion syster	al equation	s, Funda	mental	s of linea	r and	d nonlinear	
			Learni	ing Objecti	ves					
ي To sch ک To ma ک To trai ک To edu	ool the stude ke the studen n the student icate the stud	nts about th ts understands on bifurcation ents about the	ne analytic nd the cor ations and the theory	cal and num neepts of va onset of ch of chaos an	nerical te rious col naos. nd its cha	chniqu herent	es of non structures	linea 3.	ar dynamics.	
💉 To ma	ke the studen	its aware of	the appli	cations of s	olitons, c	chaos a	nd fracta	ls.		
UNITSCourse DetailsUNIT I: GENERALLinear waves-ordinary differential equations(ODEs)-Partial differential equations(PDEs)- Methods to solve ODEs and PDEs Numeric methods – Linear and Nonlinear oscillators-Nonlinear waves-Qualitations features								differential Numerical s-Qualitative		
UNIT COHER STRUCT	II: ENT URES	inear and N neory of Kd	Nonlinear IV equatio	dispersive on –Ubiquit	waves - S ous solit	Soliton on equ	s – KdV ations – A	equa AKN	ation – Basic IS Method.	
UNIT PERTURB METHO	III: ATION DDS	Backlund transformation, Hirotabilinearization method, Painleve analysis - Perturbation methods- Solitons in Optical fibres - Applications.								
UNIT BIFURCA AND ONS CHA(IV: TIONS ET OF OS	One dimensional flows – Two dimensional flows – Phase plane – Limit cycles – Simple bifurcations – Discrete Dinamical system – Strange attractors – Routes to chaos.								
UNIT APPLICA'	V S TIONS –	oliton base ynchroniza Image pro Time Serie	ed commution of ch cessing – es analysis	unication synaos – Chao Stochastic S.	ystems - os based – Resona	- Solit comm ance –	ion based unication Chaos ba	d co $1 - C$ ased	mputation – Cryptography computation	
PROFESS COMPON	IONAL INIENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism								
TEXT B	OOKS	 M. L Integ A. H Com Draz 2012 Wigg Syste Strog Appl West 	Lakshmanan and S. Rajasekar, Nonlinear Dynamics: egrability, Chaos and Patterns. Springer, 2003. Hasegawa and Y. Kodama, Solitons in Optical mmunications. Oxford Press, 1995. azin, P. G. Nonlinear Systems. Cambridge University Press, 12. ISBN: 9781139172455. ggins, S. Introduction to Applied Nonlinear Dynamical stems and Chaos. Springer, 2003. ISBN: 9780387001777. ogatz, Steven H. Nonlinear Dynamics and Chaos: With plications to Physics, Biology, Chemistry, and Engineering.						ty Press, iical 01777. Vith ineering.	
REFERE BOOI	ENCE KS	1. G. D Cam 2. M. L Worl 3. S. St 1995 4. Hao 5. Kahr (Wile	razin and bridge Un akshmana d Scientif rogatz. No Bai-Lin, O n, P. B., M ey, NY, 19	R. S. Johns iversity Pre- an and K. M. fic, 1989. onlinear Dy Chaos (Wor Iathematica 990)	on. Solit ess, 1989 Iurali. Cl namics a ld Scien l Methoo	tidic, S	n Introdu Nonlinea aos. Addi ingapore Scientists	ar Os ison , 198 & E	n. scillators. Wesley, 34). ngineers	

	1. https://www.digimat.in/nptel/courses/video/108106135/L0	<u>6.html</u>
	2. http://digimat.in/nptel/courses/video/115105124/L01.html	
WEB SOURCES	3. https://www.digimat.in/nptel/courses/video/108106135/L0	1.html
	4. http://complex.gmu.edu/neural/index.html	
	5. <u>https://cnls.lanl.gov/External/Kac.php</u>	

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1	Gain knowledge about the available analytical and numerical methods to solve	K1,
	various nonlinear systems.	K4
CO2	Understand the concepts of different types of coherent structures and their importance in science and technology.	К2
CO3	Learn about simple and complex bifurcations and the routes to chaos	K1,
		K2
CO4	Acquire knowledge about various oscillators, characterization of chaos and	V1
	fractals.	NI
CO5	To analyze and evaluate the applications of solutions in telecommunication,	K3,
	applications of chaos in cryptography, computations and that of fractals.	K5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	1	2	2	2	2
CO2	3	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	2	2	1	2	2	2	2
CO5	1	2	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	1	2	2	2	2
CO2	3	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	2	2	1	2	2	2	2
CO5	1	2	2	2	2	2	2	2	2	2

Title of the (Course	CHARACTERIZATON OF MATERIALS								
Part		Α								
Catagony	EC- III	Year	Ι	Credita	2	C	ourse	2	222104205	
Category		Semester	r II	Creans	5	Code		252104205		
Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	Exteri	nal	Total	
per week		4	-		4	25	75		100	

Pre-Requisites
Fundamentals of Heat and Thermodynamics, Basics of Optical systems, Microscopic systems,
Electrical measurements and Fundamentals of Spectroscopy.

- Learning Objectives
 To make the students learn some important thermal analysis techniques namely TGA, DTA, DSC and TMA.
- To make the students understand the theory of image formation in an optical microscope and to introduce other specialized microscopic techniques.
- To make the students learn and understand the principle of working of electron microscopes and scanning probe microscopes.
- To make the students understand some important electrical and optical characterization techniques for semiconducting materials.
- To introduce the students the basics of x-ray diffraction techniques and some important spectroscopic techniques.

UNITS	Course details
UNIT I THERMAL ANALYSIS	Introduction – thermogravimetric analysis (TGA) – instrumentation – determination of weight loss and decomposition products – differential thermal analysis (DTA)- cooling curves – differential scanning calorimetry (DSC) – instrumentation – specific heat capacity measurements – determination of thermomechanical parameters.
UNIT II MICROSCOPIC METHODS	Optical Microscopy: optical microscopy techniques – Bright field optical microscopy – Dark field optical microscopy – Dispersion staining microscopy - phase contrast microscopy –differential interference contrast microscopy - fluorescence microscopy - confocal microscopy - digital holographic microscopy - oil immersion objectives - quantitative metallography - image analyzer.
UNIT III ELECTRON MICROSCOPY AND SCANNING PROBE MICROSCOPY	SEM, EDAX, EPMA, TEM: working principle and Instrumentation – sample preparation –Data collection, processing and analysis- Scanning tunneling microscopy (STEM) - Atomic force microscopy (AFM) - Scanning new field optical microscopy.
UNIT IV ELECTRICAL METHODS AND OPTICAL CHARACTERISATION	Two probe and four probe methods- van der Pauw method – Hall probe and measurement – scattering mechanism – C-V characteristics – Schottky barrier capacitance – impurity concentration – electrochemical C-V profiling – limitations. Photoluminescence – light – matter interaction – instrumentation – electroluminescence – instrumentation – Applications.
UNIT V X-RAY AND SPECTROSCOPIC METHODS	Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy, Raman spectroscopy, ESR, NMR, NQR, XPS, AES and SIMS-proton induced X-ray Emission spectroscopy (PIXE) – Rutherford Back Scattering (RBS) analysis-application - Powder diffraction - Powder diffractometer -interpretation of diffraction patterns - indexing - phase identification - residual stress analysis - Particle size, texture studies - X-ray fluorescence spectroscopy - uses.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS	 R. A. Stradling and P. C. Klipstain. Growth and Characterization of semiconductors. Adam Hilger, Bristol, 1990. J. A. Belk. Electron microscopy and microanalysis of crystalline materials. Applied Science Publishers, London, 1979. Lawrence E. Murr. Electron and Ion microscopy and Microanalysis principles and Applications. Marcel Dekker Inc., New York, 1991 D. Kealey and P. J. Haines. Analytical Chemistry. Viva Books Private Limited, New Delhi, 2002. Li, Lin, Ashok Kumar Materials Characterization Techniques Sam
	Zhang; CRC Press, (2008).
REFERENCE BOOKS	 Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-Hall, (2001). Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, Inc. USA, (2001). Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., Advanced Techniques for Materials Characterization, Materials Science Foundations (monograph series), Volumes 49 – 51, (2009).Volumes 49 – 51, (2009). Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, (1986). Wachtman, J.B., Kalman, Z.H., Characterization of Materials, ButterworthHeinemann, (1993)
WEB SOURCES	 https://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC)).pdf http://www.digimat.in/nptel/courses/video/113106034/L11.html https://nptel.ac.in/courses/104106122 https://nptel.ac.in/courses/118104008
	5. <u>https://www.sciencedirect.com/journal/materials-characterization</u>

At the end of the course, the student will be able to:

CO1	Describe the TGA, DTA, DSC and TMA thermal analysis techniques and	K1,
	make interpretation of the results.	K3
CO2	The concept of image formation in Optical microscope, developments in other specialized microscopes and their applications.	K2
CO3	The working principle and operation of SEM, TEM, STM and AFM.	K2,
		K3
CO4	Understood Hall measurement, four –probe resistivity measurement, C-V, I-V, Electrochemical, Photoluminescence and electroluminescence experimental techniques with necessary theory.	K3, K4
C05	The theory and experimental procedure for x- ray diffraction and some important spectroscopic techniques and their applications.	K4,K5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

Title of the Cour	rse	ADVAN	CED OP	ΓICS						
Part		Α								
SEG	C- II	Year	Ι	a 1	2	С	ourse		2210	1000
Category		Semeste	r II	Credits	2	C	ode	2	232104	1206
Instructional Ho per week	ours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Т	otal
•		2	-		2	25	75		1	.00
			Pre	e-Requisite	S					
Knowledge	of ray	v properti	es and v	wave natu	re of li	ght				
			Learr	ning Object	tives					
🗷 To know t	the con	cepts behi	nd polariz	ation and c	ould pur	sue res	earch w	ork o	on app	lication
aspects of	laser									
🖉 To impart	an ext	ensive und	erstanding	g of fiber an	d non-li	near op	otics			
🖉 To study t	the wor	king of di	ferent typ	es of LASE	ERS					
Z To differe	ntiate f	first and se	cond harn	nonic gener	ation					
∠ Learn the	princip	oles of mag	neto-optic	c and electro	o-optic e	ffects	and its a	pplic	ations	
UNITS					<u>irse Det</u>	ails		0.11		
			on of pola	arization –	Transve	erse ch	haracter	of li	ight w	vaves –
UNIT 1:	P	olarizer ai	id analyze	er – Malu's	s law –	Produ	ction of	pola	arized	light –
POLARIZATI	$\begin{bmatrix} 0 \\ \mathbf{D} \end{bmatrix}$	vire grid	polarizer	and the p	olaroid	- POI	arization	i by	refle	ction –
N AND DOUB	$LE \begin{bmatrix} P \\ n \end{bmatrix}$	bonomono	by dout	blo rofrocti	OII - PO	ormol	and ob	scau	incid	- The
REFRACTIO	N P	nenomeno	of polariz	zed light: O	uarter ar	ormar nd half	wave n	ates	$-\Delta na$	lucie of
	n	olarized lig	ht = Ontic	cal activity	uarter ai	iu nun	wave p	acos	1 1110	1y515 01
	B	asic princ	ples – Spin	ontaneous	and stim	ulated	emissic	ons –	Com	ponents
UNIT II:	0	of the laser – Resonator and lasing action – Types of lasers and its								
LASERS	a	applications – Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers								
	_	- He-Ne laser - CO_2 laser - Chemical lasers - HCl laser - Semiconductor								
	la	aser								
	Iı	Introduction – Total internal reflection – The optical fiber – Glass fibers –								
UNIT III:	T	The cohere	nt bundle	– The nun	nerical a	perture	e - Atte	nuati	ion in	optical
FIBER OPTIC	$cs ^{t_1}$	bers - Sin	igle and r	nulti-mode	fibers -	- Pulse	dispers	10n 1	in mu	ltimode
	0	optical fibers – Ray dispersion in multimode step index fibers – Parabolic-								
	D D	recision vi	bration se	nsor	isors. pr	CISIO	i uispia	Cent	ent se	
UNIT IV.	1			11301						
NON-LINEA	$\mathbf{R} \mid \mathbf{B}$	asic princi	ples – Ha	rmonic ger	neration	– Seco	nd harm	onic	gener	ration –
OPTICS	P	Phase matching – Third harmonic generation – Optical mixing –								
	P	Parametric generation of light – Self-focusing of light								
UNIT V:	Ν	lagneto-op	tical effe	cts – Zeer	nan effe	ect –	Inverse	Zeer	man e	effect –
MAGNETO	• F	araday eff	ect – Voi	gt effect –	Cotton-	mouto	n effect	– K	lerr m	agneto-
OPTICS ANI	\mathbf{D}	ptic effect	– Electro-	optical effe	ects – Sta	ark eff	ect – Inv	verse	stark	effect –
ELECTRO-	E	Electric double refraction – Kerr electro-optic effect – Pockels electro-								
UNIT VI.	0	ptic effect								
PROFESSION	JA E	xpert Le	ctures,	Online Se	eminars	- \	Vebinars	S O	n In	dustrial
L	li II	nteractions	/Visits,	Competitiv	ve Exa	minati	ons, I	Empl	oyable	e and
COMPONEN	rs C	Communica	tion Skill	Enhanceme	ent, Soci	al Acc	ountabili	ity ar	nd Pati	riotism
	1.	B. B. La	ud, 2017.	Lasers and	l Non –	Linea	· Optics.	3 rd	Editio	n, New
		Age Inte	rnational ((P) Ltd.			1			,
	2.	Ajoy Gh	atak, 2017	7, Optics, 6	th Edition	n, McC	Braw – H	Iill E	ducati	ion Pvt.
		Ltd.								
TEXT BOOK	3	William	T. Silfvas	t, 1996, Las	ser Fund	amenta	lls Camb	oridge	e Univ	versity
	-~ .	Press, N	ew York	ст. 1	10		1 / 1 /	•	4 .	
	4.	J. Peatro	s, Physics	ot Light an	d Optics	s, a goo	od (and f	ree!)	electr	onic
	5	DOOK	h and	M Taiak	Euroda	montal	a of D	hoto	nica	Wilow
	5.	Interscie	n, and l	wi. i cicil,	i unual	nental	5 UI P	1010	mes,	winey-

	1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4 th						
	Edition), McGraw – Hill International Edition.						
	2. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley - VCH,						
REFERENCE	Varley GmbH.						
BOOKS	3. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4 th Edition,						
	Cambridge University Press, New Delhi, 2011.						
	4. Y. B. Band, Light and Matter, Wiley and Sons (2006)						
	5. R. Guenther, Modern Optics, Wiley and Sons (1990)						
	1. <u>https://www.youtube.com/watch?v=WgzynezPiyc</u>						
	2. <u>https://www.youtube.com/watch?v=ShQWwobpW60</u>						
WED SOUDCES	3. <u>https://www.ukessays.com/essays/physics/fiber-optics-and-it-</u>						
WED SOURCES	applications.php						
	4. <u>https://www.youtube.com/watch?v=0kEvr4DKGRI</u>						
	5. <u>http://optics.byu.edu/textbook.aspx</u>						

At the end of the course, the student will be able to:

CO1	Discuss the transverse character of light waves and different polarization	K1
CO2	Discriminate all the fundamental processes involved in laser devices and to analyze the design and operation of the devices	K2
CO3	Demonstrate the basic configuration of a fiber optic – communication system and advantages	K3, K4
CO4	Identify the properties of nonlinear interactions of light and matter	K4
CO5	Interpret the group of experiments which depend for their action on an applied magnetics and electric field	K5
K1 - Ren	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	3
C02	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Title of the	e Course	THIN FILMS								
Part		Α								
Category	AECC II	Year	Ι	Cradita	2	Co	ourse		22104207	
	AECC - II	Semester	r II	Creatts	Δ	Code		252104207		
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total CIA External		Total			
		2	-		2	25 75			100	

Pre-Requisites

To make the students understand the technique to prepare the thin films and devices.

- Learning Objectives
- $\not {\ensuremath{ \ensuremath{ \ensuremath{$
- \ll To apply the techniques of Thin Film Formation and thickness Measurement
- To understand the various characterization techniques and study the electrical, optical and magnetic properties of the thin films
- & Acquire skills required for entrepreneurship of jobs in the field of thin films

UNITS	Course Details
UNIT I:	Introduction: Brief Introduction of the bulk and the thin film properties.
THIN FILM	Thermal Evaporation – Electron beam Evaporation – Molecular Beam
DEPOSTION	Epitaxy - Sputtering Deposition (DC, RF and Microwave) - Spray
TECHNIQUES	Pyrolysis – Dip Coating – Spin Coating
UNIT II:	Thin Film Formation and thickness Measurement Nucleation, Film
THIN FILM	growth and structure - Various stages in Thin Film formation -
FORMATION	Thermodynamics of Nucleation - Nucleation theories - Capillarity
	model and Atomistic model and their comparison.
UNIT III:	Structural Characterization – X-ray Diffraction – SEM – TEM – UV-
CHARACTERIZATION	Visible Spectrum – FTIR – X-ray Photoelectron Spectroscopy (XPS) –
OF THIN FILMS	Energy Dispersive Atomic X-ray Spectroscopy (EDAX)
	Sources of Resistivity in metallic conductors - Sheet Resistance -
UNIT IV:	Temperature Coefficient of Resistance – Influence of Thickness on the
ELECTRICAL,	Resistivity – Hall Effect– Optical Characterization by
OPTICAL AND	Spectrophotometer- Energy Band Gap - Magneto Resistance - Ferro
MAGNETIC	Magnetic Domain Studies – Meisner Effect – Super Conducting Stage.
PROPERTIES OF	
THIN FILMS	4
UNIT V:	Pattering techniques (Photolithography), Diamond Films, Thin Film
APPLICATIONS OF	resistors, capacitors, Junction Devices (Diode, Transistors, Solar
THIN FILMS	Cells), ICs, Thin Film Sensors (Gas and Humidity)
	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and
	Patriotism
	1. Hand Book of Thin Film Technology: L.I. Maissel and R. Glang,
	Mc Graw Hill Book Co. $19/0, 07-039/42-2$.
	2. Thin Film Phenomena: K.L Chopra, Mc Graw Hill Book Co.
TEXT BOOKS	
	5. A. Goswami, Inin Film Fundamentals (New Age, New Delhi,
	4 Thin Film Process: LL Vessen and Kern Academic Press 1079
	4. Thin Finn Flocess: J.L. Vossen and Keni, Academic Press, 1978.

REFERENCE BOOKS	 Materials Science of Thin Films: M. Ohring, Acdemic Press, 1992, ISBN:0- 12-524990-X Vaccum Depostion of Thin Films: L. Hoolland John Wiley & Sons Inc. New York 1958. Thin Film Solar Cells- K.L. Chopra and S.R. Das Plenum Press, New York 1983. A Sensor Compreshensive survey V6. Edited by W. Gopal, J, Hesse, JN.
	1. https://www.youtube.com/watch?v=aY1Vxw1br6E
WEB SOURCES	2. https://www.youtube.com/watch?v=X4dc5KeLJAI
	3. https://www.youtube.com/watch?v=oXowkdgJPO4

At the end of the course, the student will be able to:

CO1	Understand the Thin film deposition methods	K1						
CO2	Apply the techniques of Thin Film Formation and thickness Measurement	K2, K4						
CO3	To understand the various characterization techniques	К3						
CO4	Study the electrical, optical and magnetic properties of the thin films	K2						
CO5	Learn the various applications of thin films and fabricate the devices	K3, K4						
K1 - Rem	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2